File size: 2,041 Bytes
ade14bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: SEED0042
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: HATEXPLAIN
type: ''
args: hatexplain
metrics:
- name: Accuracy
type: accuracy
value: 0.4162330905306972
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SEED0042
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the HATEXPLAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7667
- Accuracy: 0.4162
- Accuracy 0: 0.8145
- Accuracy 1: 0.1895
- Accuracy 2: 0.3084
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: not_parallel
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy 0 | Accuracy 1 | Accuracy 2 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:----------:|:----------:|
| No log | 1.0 | 481 | 0.7431 | 0.4152 | 0.7707 | 0.1805 | 0.3650 |
| No log | 2.0 | 962 | 0.7346 | 0.4152 | 0.8010 | 0.2190 | 0.2774 |
| No log | 3.0 | 1443 | 0.7667 | 0.4162 | 0.8145 | 0.1895 | 0.3084 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu113
- Datasets 2.1.0
- Tokenizers 0.11.6
|