File size: 2,109 Bytes
2130aa8 716af53 2130aa8 cfc32c9 2130aa8 716af53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: English_Technical_finetuned
results: []
datasets:
- Tejasva-Maurya/English-Technical-Speech-Dataset
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# English_Technical_finetuned
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an [English Technical Speech Dataset](https://huggingface.co/datasets/Tejasva-Maurya/English-Technical-Speech-Dataset) .
It achieves the following results on the evaluation set:
- Loss: 0.4451
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6122 | 0.3168 | 100 | 0.5289 |
| 0.5468 | 0.6337 | 200 | 0.4885 |
| 0.5207 | 0.9505 | 300 | 0.4745 |
| 0.5086 | 1.2673 | 400 | 0.4729 |
| 0.5012 | 1.5842 | 500 | 0.4638 |
| 0.4982 | 1.9010 | 600 | 0.4564 |
| 0.4888 | 2.2178 | 700 | 0.4528 |
| 0.4862 | 2.5347 | 800 | 0.4515 |
| 0.4866 | 2.8515 | 900 | 0.4454 |
| 0.4753 | 3.1683 | 1000 | 0.4451 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Tokenizers 0.19.1 |