File size: 39,203 Bytes
e7addf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
# coding=utf-8
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2021 EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch TELECHAT model."""
import warnings
from typing import Optional, Tuple, Union, List, Dict
from threading import Thread
import torch
import math
import copy
from torch import nn
import torch.utils.checkpoint
from torch.nn import functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers import GenerationConfig
from .configuration_telechat import TelechatConfig
from .generation_utils import History, TelechatIterTextStreamer
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "telechat"
_CONFIG_FOR_DOC = "TelechatConfig"
TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = []
try:
from einops import rearrange
except ImportError:
rearrange = None
use_flash_attn = True
try:
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
try:
from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
except ImportError:
flash_attn_unpadded_func = None
class RotaryEmbedding(torch.nn.Module):
# Extracted from: https://github.com/EleutherAI/gpt-neox
def __init__(self, dim, config, base=10000, precision=torch.half):
super().__init__()
self.config = config
self.dim = dim
self.base = base
self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda()
self.max_seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
self.precision = precision
def get_mscale(self, scale=1):
if scale <= 1:
return 1.0
return 0.1 * math.log(scale) + 1.0
def get_ntk_alpha(self, true_seq_len):
context_value = math.log(true_seq_len / self.config.base_seqlen, 2) + 1
# ntk_alpha = 2 ** context_value - 1
ntk_alpha = 2 ** math.ceil(context_value) - 1
ntk_alpha = max(ntk_alpha, 1)
return ntk_alpha
def forward(self, x, seq_dim=0, seq_len=None):
if seq_len is None:
seq_len = x.shape[seq_dim]
seq_len = max(seq_len, self.config.training_seqlen)
ntk_alpha = self.get_ntk_alpha(seq_len)
self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen))
if True:
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
if self.precision == torch.bfloat16:
emb = emb.float()
# [sx, 1 (b * np), hn]
self.cos_cached = self.mscale * emb.cos()[:, None, :].half()
self.sin_cached = self.mscale * emb.sin()[:, None, :].half()
if self.precision == torch.bfloat16:
self.cos_cached = self.cos_cached.bfloat16()
self.sin_cached = self.sin_cached.bfloat16()
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
# rotary pos emb helpers:
def rotate_half(x):
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0): # jitting fails with bf16
cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...]
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class MixedFusedRMSNorm(nn.Module):
# Extracted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class FlashSelfAttention(torch.nn.Module):
# Extracted from https://github.com/microsoft/Megatron-DeepSpeed/blob/main/megatron/model/transformer.py
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
device=None, dtype=None):
super().__init__()
assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
'e.g., with pip install flash-attn')
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
self.causal = causal
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def forward(self, q, k, v):
"""Implements the multihead softmax attention.
Arguments
---------
q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
"""
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
assert all((i.is_cuda for i in (q, k, v)))
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = k.shape[1]
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
device=q.device)
# self.training = False
if self.training:
# during training q,k,v always have same seqlen
assert seqlen_k == seqlen_q
is_causal = self.causal
cu_seqlens_k = cu_seqlens_q
dropout_p = self.dropout_p
else:
# turn off FA causal mask after first inference autoregressive iteration
# only on first autoregressive step q,k,v have same seqlen
is_causal = seqlen_q == seqlen_k
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
device=q.device)
dropout_p = 0
output = flash_attn_unpadded_func(
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
dropout_p=dropout_p,
softmax_scale=self.softmax_scale, causal=is_causal
)
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
return output
def _make_causal_mask(
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
"""
Make causal mask used for self-attention.
"""
batch_size, target_length = input_ids_shape
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
seq_ids = torch.arange(target_length, device=device)
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
if past_key_values_length > 0:
mask[:, :past_key_values_length] = False
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
return expanded_mask
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
"""
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
"""
batch_size, src_length = mask.shape
tgt_length = tgt_length if tgt_length is not None else src_length
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
"""
Dropout add function
Args:
x (`torch.tensor`, *required*):
input tensor
residual (`torch.tensor`, *required*):
residual tensor
prob (`float`, *required*):
dropout probability
training (`bool`, *required*):
training mode
"""
out = F.dropout(x, p=prob, training=training)
out = residual + out
return out
def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor:
"""
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
make the model jitable.
Args:
x (`torch.tensor`, *required*):
input hidden states
"""
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
"""
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
0.3989423 * x * torch.exp(-0.5 * x * x)
Args:
g (`torch.tensor`, *required*):
gradient output tensor
x (`torch.tensor`, *required*):
input tensor
"""
x = x[0] # x is a tuple of 1 element, needs to unpack it first
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
return ff * g
class GeLUFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
ctx.save_for_backward(input)
return telechat_gelu_forward(input)
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
input = ctx.saved_tensors
tmp = telechat_gelu_back(grad_output, input)
return tmp
class TelechatGelu(nn.Module):
"""
TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
copied from Megatron-DeepSpeed code and adapted for our needs
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
"""
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.training:
return GeLUFunction.apply(x)
else:
return telechat_gelu_forward(x)
class TelechatAttention(nn.Module):
def __init__(self, config: TelechatConfig, layer_idx):
super().__init__()
self.kv_cache = None
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.n_head
self.head_dim = self.hidden_size // self.num_heads
self.split_size = self.hidden_size
self.hidden_dropout = config.hidden_dropout
self.config = config
if self.head_dim * self.num_heads != self.hidden_size:
raise ValueError(
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
f" {self.num_heads})."
)
# Layer-wise attention scaling
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
self.beta = 1.0
self.num_key_value_heads = config.num_key_value_heads if config.num_key_value_heads else self.num_heads
self.kv_projection_size = self.head_dim * self.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.key_value = nn.Linear(self.hidden_size, self.kv_projection_size * 2, bias=False)
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.rotary_emb = RotaryEmbedding(self.head_dim, config=config)
self.core_attention_flash = FlashSelfAttention(
causal=True, attention_dropout=config.attention_dropout
)
self.last_key_layer = None
# logn_list = [math.log(i, 4096) if i > 4096 else 1 for i in range(1, 32768)]
# self.logn_tensor = torch.tensor(logn_list)[None, :, None, None].half().cuda()
def repeat_kv(self, hidden_states, n_rep):
slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep,
head_dim)
return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim)
def split_tensor_along_last_dim(self,
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
):
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = tensor.size()[last_dim] // num_partitions
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
batch_size_and_num_heads, seq_length, _ = x.shape
batch_size = batch_size_and_num_heads // self.num_heads
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
x = x.permute(0, 2, 1, 3)
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
residual: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
hidden_states = hidden_states.transpose(1, 0)
query_layer = self.query(hidden_states)
new_tensor_shape = query_layer.size()[:-1] + \
(self.num_heads,
self.head_dim)
query_layer = query_layer.view(*new_tensor_shape)
mixed_kv_layer = self.key_value(hidden_states)
new_tensor_shape = mixed_kv_layer.size()[:-1] + \
(self.num_key_value_heads,
2 * self.head_dim)
mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)
(key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2)
output_size = (query_layer.size(1),
query_layer.size(2),
query_layer.size(0),
key_layer.size(0),
key_layer.size(2)
)
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[4], -1)
apply_rotary_fn = apply_rotary_pos_emb_torch
seq_len = key_layer.shape[0]
offset = 0
if use_cache and layer_past != None:
past_key, past_value = layer_past
offset = past_key.shape[0]
seq_len += offset
cos, sin = self.rotary_emb(value_layer, seq_len=seq_len)
query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset)
if use_cache:
if layer_past != None:
past_key, past_value = layer_past
key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)), dim=0)
value_layer = torch.cat((past_value, value_layer[-1, ...].unsqueeze(0)), dim=0)
layer_past = key_layer, value_layer
s_value, bz, kv_head, dim = value_layer.shape
s_key = key_layer.shape[0]
s_query = query_layer.shape[0]
q_head = output_size[1]
query_layer = query_layer.reshape((s_query, bz, q_head, dim))
key_layer = key_layer.reshape((s_key, bz, kv_head, dim))
key_layer = self.repeat_kv(key_layer, self.num_key_value_groups)
value_layer = self.repeat_kv(value_layer, self.num_key_value_groups)
if self.config.flash_attn:
q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in
(query_layer, key_layer, value_layer)]
context_layer = self.core_attention_flash(q, k, v)
context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous()
else:
##[sq, b, np, hn] -> [sq, b * np, hn]
query_layer = query_layer.reshape(s_query, bz * self.num_heads, dim)
# [sk, b, np, hn] -> [sk, b * np, hn]
key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim)
matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1),
key_layer.transpose(0, 1).transpose(1, 2))
attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key)
input_dtype = attention_scores.dtype
if input_dtype == torch.float16:
attention_scores = attention_scores.to(torch.float)
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype) ##dtype = torch.float32
attention_probs = self.attention_dropout(attention_probs)
attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key)
value_layer = value_layer.reshape(s_key, bz * self.num_heads, dim)
context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
context_layer = self._merge_heads(context_layer)
output_tensor = self.dense(context_layer)
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
present = None
outputs = (output_tensor, present)
if output_attentions:
outputs += (attention_probs,)
return output_tensor, layer_past
class TelechatMLP(nn.Module):
def __init__(self, config: TelechatConfig):
super().__init__()
hidden_size = config.hidden_size
self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True)
self.hidden_dropout = config.hidden_dropout
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
return output
class TelechatBlock(nn.Module):
def __init__(self, config: TelechatConfig, layer_idx):
super().__init__()
hidden_size = config.hidden_size
self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
self.num_heads = config.n_head
self.layer_idx = layer_idx
self.self_attention = TelechatAttention(config, layer_idx)
self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = TelechatMLP(config)
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
self.hidden_dropout = config.hidden_dropout
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
layernorm_output = self.input_layernorm(hidden_states)
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
attn_outputs = self.self_attention(
layernorm_output,
residual,
layer_past=layer_past,
attention_mask=attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attention_output = attn_outputs[0]
outputs = attn_outputs[1:]
layernorm_output = self.post_attention_layernorm(attention_output)
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = attention_output
output = self.mlp(layernorm_output, residual)
if use_cache:
outputs = (output,) + outputs
else:
outputs = (output,) + outputs[1:]
return outputs
class TelechatPreTrainedModel(PreTrainedModel):
config_class = TelechatConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["TelechatBlock"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
if isinstance(module, TelechatModel):
module.gradient_checkpointing = value
class TelechatModel(TelechatPreTrainedModel):
def __init__(self, config: TelechatConfig):
super().__init__(config)
self.embed_dim = config.hidden_size
self.num_heads = config.n_head
self.config = config
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
if self.config.embed_layernorm:
self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.h = nn.ModuleList([TelechatBlock(config, _) for _ in range(config.num_hidden_layers)])
self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.word_embeddings
def _prepare_attn_mask(
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
) -> torch.BoolTensor:
combined_attention_mask = None
device = attention_mask.device
_, src_length = input_shape
if src_length > 1:
combined_attention_mask = _make_causal_mask(
input_shape, device=device, past_key_values_length=past_key_values_length
)
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
)
return combined_attention_mask
def set_input_embeddings(self, new_embeddings: torch.Tensor):
self.word_embeddings = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
if past_key_values is None:
past_key_values = tuple([None] * len(self.h))
# input_ids = torch.load("Megatron-LM-0624-3B/tensors/input_ids.pt").to(input_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
hidden_states = inputs_embeds
# print(f"[INFO_Telechat]: inputs_embeds={inputs_embeds}")
if self.config.embed_layernorm:
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values[0] is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
else:
attention_mask = attention_mask.to(hidden_states.device)
causal_mask = self._prepare_attn_mask(
attention_mask,
input_shape=(batch_size, seq_length),
past_key_values_length=past_key_values_length,
)
# print(f"[INFO_Telechat]: word_embeddings_layernorm={hidden_states}")
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
causal_mask,
layer_past,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
# print(f"[INFO_Telechat]: outputs{i}={outputs}")
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.ln_f(hidden_states)
# print(f"[INFO_Telechat]: hidden_states={hidden_states}")
# ref = torch.load("Megatron-LM-0624-3B/tensors/final_layernorm.pt")
# print(hidden_states.squeeze()[2048:])
# print(ref.squeeze())
# print(torch.max(hidden_states.squeeze()[2048:] - ref.squeeze().to(hidden_states.device)))
# exit()
# print(ref.shape,hidden_states.shape)
# print(hidden_states)
# exit()
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class TelechatForCausalLM(TelechatPreTrainedModel):
# _tied_weights_keys = ["lm_head.weight"]
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
def __init__(self, config: TelechatConfig):
super().__init__(config)
self.transformer = TelechatModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings: torch.Tensor):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> dict:
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
batch_size, seq_length, vocab_size = shift_logits.shape
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def chat(self, tokenizer, question: str = '', history: Union[List[Dict], History] = None, stream: bool = False,
generation_config: Optional[GenerationConfig] = None, **kwargs):
"""
Args:
tokenizer: the tokenizer of telechat
question: question which the model reply in this turn
history: history which will format the input for telechat
stream: if return the full text at last or yield the text in token
generation_config: configuration for generation
**kwargs: args which will update the generation config or pass to model forward
"""
generation_config = generation_config or self.generation_config
if not generation_config:
logger.error("generation_config is None")
raise ValueError("generation_config must not be None")
if not question:
logger.error("question is empty")
raise ValueError("question must not be empty")
if history is None:
history = []
# we update and check generate_config here for building inputs.
generation_config = copy.deepcopy(generation_config)
user_id = generation_config.user_token_id
bot_id = generation_config.bot_token_id
model_kwargs = generation_config.update(**kwargs)
generation_config.validate()
# transfer to History
if not isinstance(history, History):
history = History(tokenizer, history)
inputs = self.build_inputs_for_chat(tokenizer, question, history, generation_config, user_id, bot_id)
history.append({"role": "user", "content": question})
if stream:
streamer = TelechatIterTextStreamer(tokenizer, history, skip_prompt=True)
Thread(target=self.generate, kwargs=dict(
inputs=inputs.to(self.device), streamer=streamer,
generation_config=generation_config, **model_kwargs
)).start()
return streamer
else:
outputs = self.generate(inputs.to(self.device), generation_config=generation_config, **model_kwargs)
response = tokenizer.decode(outputs[0][len(inputs[0]):-1])
history.append({"role": "bot", "content": response})
return response, history
def build_inputs_for_chat(self, tokenizer, question, history, generation_config, usr_id, bot_id):
"""
check history and build inputs here
"""
# first tokenize question
q_token = tokenizer(question)
qa_history = copy.deepcopy(history)
# get the max length we should build our inputs in
model_max_length = self.config.seq_length
build_max_length = max(0, model_max_length - generation_config.max_new_tokens - 1) \
if generation_config.max_new_tokens else max(0, generation_config.max_length)
if build_max_length < 3:
logger.warning("the model can not meet the requirements of input length,Please check config")
raise ValueError("")
# trunc left
input_tokens = [usr_id] + q_token["input_ids"][-build_max_length + 1:] + [bot_id]
length = len(input_tokens)
while len(qa_history) != 0:
message = qa_history.pop()
if message["role"] == "user":
tokens = [usr_id] + message["input_ids"]
elif message["role"] == "bot":
tokens = [bot_id] + message["input_ids"] + [generation_config.eos_token_id]
else:
tokens = []
if len(tokens) + length >= build_max_length:
break
else:
input_tokens = tokens + input_tokens
input_tokens = [generation_config.bos_token_id] + input_tokens
return torch.tensor([input_tokens], dtype=torch.int64)
|