# coding=utf-8 # Copyright 2022 HuggingFace Inc. team and BigScience workshop. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2021 EleutherAI # This file is based on code by the authors denoted below and has been modified from its original version. # # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch TELECHAT model.""" import warnings from typing import Optional, Tuple, Union, List, Dict from threading import Thread import torch import math import copy from torch import nn import torch.utils.checkpoint from torch.nn import functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from transformers import GenerationConfig from .configuration_telechat import TelechatConfig from .generation_utils import History, TelechatIterTextStreamer logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "telechat" _CONFIG_FOR_DOC = "TelechatConfig" TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = [] try: from einops import rearrange except ImportError: rearrange = None use_flash_attn = True try: from flash_attn.flash_attn_interface import flash_attn_unpadded_func except ImportError: try: from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func except ImportError: flash_attn_unpadded_func = None class RotaryEmbedding(torch.nn.Module): # Extracted from: https://github.com/EleutherAI/gpt-neox def __init__(self, dim, config, base=10000, precision=torch.half): super().__init__() self.config = config self.dim = dim self.base = base self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda() self.max_seq_len_cached = None self.cos_cached = None self.sin_cached = None self.precision = precision def get_mscale(self, scale=1): if scale <= 1: return 1.0 return 0.1 * math.log(scale) + 1.0 def get_ntk_alpha(self, true_seq_len): context_value = math.log(true_seq_len / self.config.base_seqlen, 2) + 1 # ntk_alpha = 2 ** context_value - 1 ntk_alpha = 2 ** math.ceil(context_value) - 1 ntk_alpha = max(ntk_alpha, 1) return ntk_alpha def forward(self, x, seq_dim=0, seq_len=None): if seq_len is None: seq_len = x.shape[seq_dim] seq_len = max(seq_len, self.config.training_seqlen) ntk_alpha = self.get_ntk_alpha(seq_len) self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen)) if True: base = self.base * ntk_alpha ** (self.dim / (self.dim - 2)) self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim)) self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) freqs = torch.einsum('i,j->ij', t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1).to(x.device) if self.precision == torch.bfloat16: emb = emb.float() # [sx, 1 (b * np), hn] self.cos_cached = self.mscale * emb.cos()[:, None, :].half() self.sin_cached = self.mscale * emb.sin()[:, None, :].half() if self.precision == torch.bfloat16: self.cos_cached = self.cos_cached.bfloat16() self.sin_cached = self.sin_cached.bfloat16() return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...] # rotary pos emb helpers: def rotate_half(x): x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0): # jitting fails with bf16 cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...] return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) class MixedFusedRMSNorm(nn.Module): # Extracted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class FlashSelfAttention(torch.nn.Module): # Extracted from https://github.com/microsoft/Megatron-DeepSpeed/blob/main/megatron/model/transformer.py """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, ' 'e.g., with pip install flash-attn') assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, q, k, v): """Implements the multihead softmax attention. Arguments --------- q, k, v: The tensor containing the query, key, and value. (B, S, H, D) """ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v))) assert all((i.is_cuda for i in (q, k, v))) batch_size, seqlen_q = q.shape[0], q.shape[1] seqlen_k = k.shape[1] q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]] cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q.device) # self.training = False if self.training: # during training q,k,v always have same seqlen assert seqlen_k == seqlen_q is_causal = self.causal cu_seqlens_k = cu_seqlens_q dropout_p = self.dropout_p else: # turn off FA causal mask after first inference autoregressive iteration # only on first autoregressive step q,k,v have same seqlen is_causal = seqlen_q == seqlen_k cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=q.device) dropout_p = 0 output = flash_attn_unpadded_func( q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, dropout_p=dropout_p, softmax_scale=self.softmax_scale, causal=is_causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) return output def _make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround seq_ids = torch.arange(target_length, device=device) mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] if past_key_values_length > 0: mask[:, :past_key_values_length] = False expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) return expanded_mask def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, 1, tgt_length, src_length) def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: """ Dropout add function Args: x (`torch.tensor`, *required*): input tensor residual (`torch.tensor`, *required*): residual tensor prob (`float`, *required*): dropout probability training (`bool`, *required*): training mode """ out = F.dropout(x, p=prob, training=training) out = residual + out return out def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor: """ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to make the model jitable. Args: x (`torch.tensor`, *required*): input hidden states """ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: """ gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) Args: g (`torch.tensor`, *required*): gradient output tensor x (`torch.tensor`, *required*): input tensor """ x = x[0] # x is a tuple of 1 element, needs to unpack it first tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return ff * g class GeLUFunction(torch.autograd.Function): @staticmethod def forward(ctx, input: torch.Tensor) -> torch.Tensor: ctx.save_for_backward(input) return telechat_gelu_forward(input) @staticmethod def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: input = ctx.saved_tensors tmp = telechat_gelu_back(grad_output, input) return tmp class TelechatGelu(nn.Module): """ TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly copied from Megatron-DeepSpeed code and adapted for our needs See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 """ def __init__(self): super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: if self.training: return GeLUFunction.apply(x) else: return telechat_gelu_forward(x) class TelechatAttention(nn.Module): def __init__(self, config: TelechatConfig, layer_idx): super().__init__() self.kv_cache = None self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.num_heads = config.n_head self.head_dim = self.hidden_size // self.num_heads self.split_size = self.hidden_size self.hidden_dropout = config.hidden_dropout self.config = config if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = 1.0 self.num_key_value_heads = config.num_key_value_heads if config.num_key_value_heads else self.num_heads self.kv_projection_size = self.head_dim * self.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.key_value = nn.Linear(self.hidden_size, self.kv_projection_size * 2, bias=False) self.dense = nn.Linear(self.hidden_size, self.hidden_size) self.attention_dropout = nn.Dropout(config.attention_dropout) self.rotary_emb = RotaryEmbedding(self.head_dim, config=config) self.core_attention_flash = FlashSelfAttention( causal=True, attention_dropout=config.attention_dropout ) self.last_key_layer = None # logn_list = [math.log(i, 4096) if i > 4096 else 1 for i in range(1, 32768)] # self.logn_tensor = torch.tensor(logn_list)[None, :, None, None].half().cuda() def repeat_kv(self, hidden_states, n_rep): slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep, head_dim) return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim) def split_tensor_along_last_dim(self, tensor: torch.Tensor, num_partitions: int, contiguous_split_chunks: bool = False, ): # Get the size and dimension. last_dim = tensor.dim() - 1 last_dim_size = tensor.size()[last_dim] // num_partitions # Split. tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) # Note: torch.split does not create contiguous tensors by default. if contiguous_split_chunks: return tuple(chunk.contiguous() for chunk in tensor_list) return tensor_list def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: batch_size_and_num_heads, seq_length, _ = x.shape batch_size = batch_size_and_num_heads // self.num_heads x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) x = x.permute(0, 2, 1, 3) return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) def forward( self, hidden_states: torch.Tensor, residual: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = False, output_attentions: bool = False, ): hidden_states = hidden_states.transpose(1, 0) query_layer = self.query(hidden_states) new_tensor_shape = query_layer.size()[:-1] + \ (self.num_heads, self.head_dim) query_layer = query_layer.view(*new_tensor_shape) mixed_kv_layer = self.key_value(hidden_states) new_tensor_shape = mixed_kv_layer.size()[:-1] + \ (self.num_key_value_heads, 2 * self.head_dim) mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) (key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2) output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0), key_layer.size(2) ) query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) key_layer = key_layer.view(output_size[3], output_size[0] * output_size[4], -1) apply_rotary_fn = apply_rotary_pos_emb_torch seq_len = key_layer.shape[0] offset = 0 if use_cache and layer_past != None: past_key, past_value = layer_past offset = past_key.shape[0] seq_len += offset cos, sin = self.rotary_emb(value_layer, seq_len=seq_len) query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset) if use_cache: if layer_past != None: past_key, past_value = layer_past key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)), dim=0) value_layer = torch.cat((past_value, value_layer[-1, ...].unsqueeze(0)), dim=0) layer_past = key_layer, value_layer s_value, bz, kv_head, dim = value_layer.shape s_key = key_layer.shape[0] s_query = query_layer.shape[0] q_head = output_size[1] query_layer = query_layer.reshape((s_query, bz, q_head, dim)) key_layer = key_layer.reshape((s_key, bz, kv_head, dim)) key_layer = self.repeat_kv(key_layer, self.num_key_value_groups) value_layer = self.repeat_kv(value_layer, self.num_key_value_groups) if self.config.flash_attn: q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in (query_layer, key_layer, value_layer)] context_layer = self.core_attention_flash(q, k, v) context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous() else: ##[sq, b, np, hn] -> [sq, b * np, hn] query_layer = query_layer.reshape(s_query, bz * self.num_heads, dim) # [sk, b, np, hn] -> [sk, b * np, hn] key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim) matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1), key_layer.transpose(0, 1).transpose(1, 2)) attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key) input_dtype = attention_scores.dtype if input_dtype == torch.float16: attention_scores = attention_scores.to(torch.float) attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype) ##dtype = torch.float32 attention_probs = self.attention_dropout(attention_probs) attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key) value_layer = value_layer.reshape(s_key, bz * self.num_heads, dim) context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1)) context_layer = self._merge_heads(context_layer) output_tensor = self.dense(context_layer) output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) present = None outputs = (output_tensor, present) if output_attentions: outputs += (attention_probs,) return output_tensor, layer_past class TelechatMLP(nn.Module): def __init__(self, config: TelechatConfig): super().__init__() hidden_size = config.hidden_size self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False) self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True) self.hidden_dropout = config.hidden_dropout def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) return output class TelechatBlock(nn.Module): def __init__(self, config: TelechatConfig, layer_idx): super().__init__() hidden_size = config.hidden_size self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon) self.num_heads = config.n_head self.layer_idx = layer_idx self.self_attention = TelechatAttention(config, layer_idx) self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = TelechatMLP(config) self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm self.hidden_dropout = config.hidden_dropout def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = False, output_attentions: bool = False, ): layernorm_output = self.input_layernorm(hidden_states) if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states attn_outputs = self.self_attention( layernorm_output, residual, layer_past=layer_past, attention_mask=attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) attention_output = attn_outputs[0] outputs = attn_outputs[1:] layernorm_output = self.post_attention_layernorm(attention_output) if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = attention_output output = self.mlp(layernorm_output, residual) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs class TelechatPreTrainedModel(PreTrainedModel): config_class = TelechatConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["TelechatBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module): """Initialize the weights.""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): if isinstance(module, TelechatModel): module.gradient_checkpointing = value class TelechatModel(TelechatPreTrainedModel): def __init__(self, config: TelechatConfig): super().__init__(config) self.embed_dim = config.hidden_size self.num_heads = config.n_head self.config = config self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) if self.config.embed_layernorm: self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.h = nn.ModuleList([TelechatBlock(config, _) for _ in range(config.num_hidden_layers)]) self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.gradient_checkpointing = False self.post_init() def get_input_embeddings(self): return self.word_embeddings def _prepare_attn_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int ) -> torch.BoolTensor: combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = _make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask def set_input_embeddings(self, new_embeddings: torch.Tensor): self.word_embeddings = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape if past_key_values is None: past_key_values = tuple([None] * len(self.h)) # input_ids = torch.load("Megatron-LM-0624-3B/tensors/input_ids.pt").to(input_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) hidden_states = inputs_embeds # print(f"[INFO_Telechat]: inputs_embeds={inputs_embeds}") if self.config.embed_layernorm: hidden_states = self.word_embeddings_layernorm(inputs_embeds) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None if self.gradient_checkpointing and self.training: if use_cache: use_cache = False seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) causal_mask = self._prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) # print(f"[INFO_Telechat]: word_embeddings_layernorm={hidden_states}") for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, causal_mask, layer_past, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=causal_mask, use_cache=use_cache, output_attentions=output_attentions, ) # print(f"[INFO_Telechat]: outputs{i}={outputs}") hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.ln_f(hidden_states) # print(f"[INFO_Telechat]: hidden_states={hidden_states}") # ref = torch.load("Megatron-LM-0624-3B/tensors/final_layernorm.pt") # print(hidden_states.squeeze()[2048:]) # print(ref.squeeze()) # print(torch.max(hidden_states.squeeze()[2048:] - ref.squeeze().to(hidden_states.device))) # exit() # print(ref.shape,hidden_states.shape) # print(hidden_states) # exit() if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class TelechatForCausalLM(TelechatPreTrainedModel): # _tied_weights_keys = ["lm_head.weight"] _keys_to_ignore_on_load_missing = [r"lm_head.weight"] def __init__(self, config: TelechatConfig): super().__init__(config) self.transformer = TelechatModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: torch.Tensor): self.lm_head = new_embeddings def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ) -> dict: if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: labels = labels.to(lm_logits.device) shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def chat(self, tokenizer, question: str = '', history: Union[List[Dict], History] = None, stream: bool = False, generation_config: Optional[GenerationConfig] = None, **kwargs): """ Args: tokenizer: the tokenizer of telechat question: question which the model reply in this turn history: history which will format the input for telechat stream: if return the full text at last or yield the text in token generation_config: configuration for generation **kwargs: args which will update the generation config or pass to model forward """ generation_config = generation_config or self.generation_config if not generation_config: logger.error("generation_config is None") raise ValueError("generation_config must not be None") if not question: logger.error("question is empty") raise ValueError("question must not be empty") if history is None: history = [] # we update and check generate_config here for building inputs. generation_config = copy.deepcopy(generation_config) user_id = generation_config.user_token_id bot_id = generation_config.bot_token_id model_kwargs = generation_config.update(**kwargs) generation_config.validate() # transfer to History if not isinstance(history, History): history = History(tokenizer, history) inputs = self.build_inputs_for_chat(tokenizer, question, history, generation_config, user_id, bot_id) history.append({"role": "user", "content": question}) if stream: streamer = TelechatIterTextStreamer(tokenizer, history, skip_prompt=True) Thread(target=self.generate, kwargs=dict( inputs=inputs.to(self.device), streamer=streamer, generation_config=generation_config, **model_kwargs )).start() return streamer else: outputs = self.generate(inputs.to(self.device), generation_config=generation_config, **model_kwargs) response = tokenizer.decode(outputs[0][len(inputs[0]):-1]) history.append({"role": "bot", "content": response}) return response, history def build_inputs_for_chat(self, tokenizer, question, history, generation_config, usr_id, bot_id): """ check history and build inputs here """ # first tokenize question q_token = tokenizer(question) qa_history = copy.deepcopy(history) # get the max length we should build our inputs in model_max_length = self.config.seq_length build_max_length = max(0, model_max_length - generation_config.max_new_tokens - 1) \ if generation_config.max_new_tokens else max(0, generation_config.max_length) if build_max_length < 3: logger.warning("the model can not meet the requirements of input length,Please check config") raise ValueError("") # trunc left input_tokens = [usr_id] + q_token["input_ids"][-build_max_length + 1:] + [bot_id] length = len(input_tokens) while len(qa_history) != 0: message = qa_history.pop() if message["role"] == "user": tokens = [usr_id] + message["input_ids"] elif message["role"] == "bot": tokens = [bot_id] + message["input_ids"] + [generation_config.eos_token_id] else: tokens = [] if len(tokens) + length >= build_max_length: break else: input_tokens = tokens + input_tokens input_tokens = [generation_config.bos_token_id] + input_tokens return torch.tensor([input_tokens], dtype=torch.int64)