shunxing1234
commited on
Upload 3 files
Browse files- tokenization_telechat2.py +223 -0
- tokenizer.model +3 -0
- tokenizer_config.json +114 -0
tokenization_telechat2.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from shutil import copyfile
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
4 |
+
import sentencepiece as spm
|
5 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
11 |
+
|
12 |
+
# TODO: when we get download url from huggingface, refresh the map
|
13 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
14 |
+
"vocab_file": {},
|
15 |
+
"tokenizer_file": {},
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
class Telechat2Tokenizer(PreTrainedTokenizer):
|
20 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
21 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
22 |
+
model_input_names = ["input_ids", "attention_mask"]
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
vocab_file,
|
27 |
+
unk_token="<unk>",
|
28 |
+
bos_token="<_start>",
|
29 |
+
eos_token="<_end>",
|
30 |
+
pad_token="<_pad>",
|
31 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
32 |
+
add_bos_token=True,
|
33 |
+
add_eos_token=False,
|
34 |
+
clean_up_tokenization_spaces=False,
|
35 |
+
**kwargs,
|
36 |
+
):
|
37 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
38 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
39 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
40 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
41 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
42 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
43 |
+
self.sp_model.Load(vocab_file)
|
44 |
+
super().__init__(
|
45 |
+
bos_token=bos_token,
|
46 |
+
eos_token=eos_token,
|
47 |
+
unk_token=unk_token,
|
48 |
+
pad_token=pad_token,
|
49 |
+
add_bos_token=add_bos_token,
|
50 |
+
add_eos_token=add_eos_token,
|
51 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
52 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
53 |
+
**kwargs,
|
54 |
+
)
|
55 |
+
self.vocab_file = vocab_file
|
56 |
+
self.add_bos_token = add_bos_token
|
57 |
+
self.add_eos_token = add_eos_token
|
58 |
+
|
59 |
+
def __getstate__(self):
|
60 |
+
state = self.__dict__.copy()
|
61 |
+
state["sp_model"] = None
|
62 |
+
return state
|
63 |
+
|
64 |
+
def __setstate__(self, d):
|
65 |
+
self.__dict__ = d
|
66 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
67 |
+
self.sp_model.Load(self.vocab_file)
|
68 |
+
|
69 |
+
@property
|
70 |
+
def vocab_size(self):
|
71 |
+
"""Returns vocab size"""
|
72 |
+
return self.sp_model.get_piece_size()
|
73 |
+
|
74 |
+
def get_vocab(self):
|
75 |
+
"""Returns vocab as a dict"""
|
76 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
77 |
+
vocab.update(self.added_tokens_encoder)
|
78 |
+
return vocab
|
79 |
+
|
80 |
+
@property
|
81 |
+
def vocab(self):
|
82 |
+
return self.get_vocab()
|
83 |
+
|
84 |
+
def _tokenize(self, text):
|
85 |
+
"""Returns a tokenized string."""
|
86 |
+
return self.sp_model.encode(text, out_type=str)
|
87 |
+
|
88 |
+
def _convert_token_to_id(self, token):
|
89 |
+
"""Converts a token (str) in an id using the vocab."""
|
90 |
+
return self.sp_model.piece_to_id(token)
|
91 |
+
|
92 |
+
def _convert_id_to_token(self, index):
|
93 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
94 |
+
token = self.sp_model.IdToPiece(index)
|
95 |
+
return token
|
96 |
+
|
97 |
+
def convert_tokens_to_string(self, tokens):
|
98 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
99 |
+
current_sub_tokens = []
|
100 |
+
out_string = ""
|
101 |
+
# prev_is_special = False
|
102 |
+
for i, token in enumerate(tokens):
|
103 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
104 |
+
if token in self.all_special_tokens:
|
105 |
+
# if not prev_is_special and i != 0:
|
106 |
+
# out_string += " "
|
107 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
108 |
+
# prev_is_special = True
|
109 |
+
current_sub_tokens = []
|
110 |
+
else:
|
111 |
+
current_sub_tokens.append(token)
|
112 |
+
# prev_is_special = False
|
113 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
114 |
+
return out_string
|
115 |
+
|
116 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
117 |
+
"""
|
118 |
+
Save the vocabulary and special tokens file to a directory.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
save_directory (`str`):
|
122 |
+
The directory in which to save the vocabulary.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
`Tuple(str)`: Paths to the files saved.
|
126 |
+
"""
|
127 |
+
if not os.path.isdir(save_directory):
|
128 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
129 |
+
return
|
130 |
+
out_vocab_file = os.path.join(
|
131 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
132 |
+
)
|
133 |
+
|
134 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
135 |
+
copyfile(self.vocab_file, out_vocab_file)
|
136 |
+
elif not os.path.isfile(self.vocab_file):
|
137 |
+
with open(out_vocab_file, "wb") as fi:
|
138 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
139 |
+
fi.write(content_spiece_model)
|
140 |
+
|
141 |
+
return (out_vocab_file,)
|
142 |
+
|
143 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
144 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
145 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
146 |
+
|
147 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
148 |
+
|
149 |
+
if token_ids_1 is not None:
|
150 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
151 |
+
|
152 |
+
return output
|
153 |
+
|
154 |
+
def get_special_tokens_mask(
|
155 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
156 |
+
already_has_special_tokens: bool = False
|
157 |
+
) -> List[int]:
|
158 |
+
"""
|
159 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
160 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
token_ids_0 (`List[int]`):
|
164 |
+
List of IDs.
|
165 |
+
token_ids_1 (`List[int]`, *optional*):
|
166 |
+
Optional second list of IDs for sequence pairs.
|
167 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
168 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
169 |
+
|
170 |
+
Returns:
|
171 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
172 |
+
"""
|
173 |
+
if already_has_special_tokens:
|
174 |
+
return super().get_special_tokens_mask(
|
175 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
176 |
+
)
|
177 |
+
|
178 |
+
bos_token_id = [1] if self.add_bos_token else []
|
179 |
+
eos_token_id = [1] if self.add_eos_token else []
|
180 |
+
|
181 |
+
if token_ids_1 is None:
|
182 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
183 |
+
return (
|
184 |
+
bos_token_id
|
185 |
+
+ ([0] * len(token_ids_0))
|
186 |
+
+ eos_token_id
|
187 |
+
+ bos_token_id
|
188 |
+
+ ([0] * len(token_ids_1))
|
189 |
+
+ eos_token_id
|
190 |
+
)
|
191 |
+
|
192 |
+
def create_token_type_ids_from_sequences(
|
193 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
194 |
+
) -> List[int]:
|
195 |
+
"""
|
196 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
197 |
+
sequence pair mask has the following format:
|
198 |
+
|
199 |
+
```
|
200 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
201 |
+
| first sequence | second sequence |
|
202 |
+
```
|
203 |
+
|
204 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
205 |
+
|
206 |
+
Args:
|
207 |
+
token_ids_0 (`List[int]`):
|
208 |
+
List of ids.
|
209 |
+
token_ids_1 (`List[int]`, *optional*):
|
210 |
+
Optional second list of IDs for sequence pairs.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
214 |
+
"""
|
215 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
216 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
217 |
+
|
218 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
219 |
+
|
220 |
+
if token_ids_1 is not None:
|
221 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
222 |
+
|
223 |
+
return output
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7a5b465bbc9465b214e0962076c1170783a8ee88fb01454b0c33609bd3cf954
|
3 |
+
size 2197499
|
tokenizer_config.json
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "Telechat2Tokenizer",
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenization_telechat2.Telechat2Tokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"added_tokens_decoder": {
|
10 |
+
"1": {
|
11 |
+
"content": "<_start>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false,
|
16 |
+
"special": true
|
17 |
+
},
|
18 |
+
"2": {
|
19 |
+
"content": "<_end>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false,
|
24 |
+
"special": true
|
25 |
+
},
|
26 |
+
"3": {
|
27 |
+
"content": "<_pad>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false,
|
32 |
+
"special": true
|
33 |
+
},
|
34 |
+
"4": {
|
35 |
+
"content": "<_user>",
|
36 |
+
"lstrip": false,
|
37 |
+
"normalized": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"single_word": false,
|
40 |
+
"special": true
|
41 |
+
},
|
42 |
+
"5": {
|
43 |
+
"content": "<_bot>",
|
44 |
+
"lstrip": false,
|
45 |
+
"normalized": false,
|
46 |
+
"rstrip": false,
|
47 |
+
"single_word": false,
|
48 |
+
"special": true
|
49 |
+
},
|
50 |
+
"6": {
|
51 |
+
"content": "<_system>",
|
52 |
+
"lstrip": false,
|
53 |
+
"normalized": false,
|
54 |
+
"rstrip": false,
|
55 |
+
"single_word": false,
|
56 |
+
"special": true
|
57 |
+
},
|
58 |
+
"9": {
|
59 |
+
"content": "<tool_call>",
|
60 |
+
"lstrip": false,
|
61 |
+
"normalized": false,
|
62 |
+
"rstrip": false,
|
63 |
+
"single_word": false,
|
64 |
+
"special": true
|
65 |
+
},
|
66 |
+
"10": {
|
67 |
+
"content": "</tool_call>",
|
68 |
+
"lstrip": false,
|
69 |
+
"normalized": false,
|
70 |
+
"rstrip": false,
|
71 |
+
"single_word": false,
|
72 |
+
"special": true
|
73 |
+
},
|
74 |
+
"11": {
|
75 |
+
"content": "<tool_response>",
|
76 |
+
"lstrip": false,
|
77 |
+
"normalized": false,
|
78 |
+
"rstrip": false,
|
79 |
+
"single_word": false,
|
80 |
+
"special": true
|
81 |
+
},
|
82 |
+
"12": {
|
83 |
+
"content": "</tool_response>",
|
84 |
+
"lstrip": false,
|
85 |
+
"normalized": false,
|
86 |
+
"rstrip": false,
|
87 |
+
"single_word": false,
|
88 |
+
"special": true
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"additional_special_tokens": [
|
92 |
+
"<_start>",
|
93 |
+
"<_end>",
|
94 |
+
"<_pad>",
|
95 |
+
"<_user>",
|
96 |
+
"<_bot>",
|
97 |
+
"<_system>",
|
98 |
+
"<tool_call>",
|
99 |
+
"</tool_call>",
|
100 |
+
"<tool_response>",
|
101 |
+
"</tool_response>"
|
102 |
+
],
|
103 |
+
"add_bos_token": false,
|
104 |
+
"add_eos_token": false,
|
105 |
+
"use_fast": false,
|
106 |
+
"clean_up_tokenization_spaces": false,
|
107 |
+
"split_special_tokens": false,
|
108 |
+
"model_max_length": 100000000,
|
109 |
+
"sp_model_kwargs": {},
|
110 |
+
"bos_token": "<_start>",
|
111 |
+
"eos_token": "<_end>",
|
112 |
+
"pad_token": "<_pad>",
|
113 |
+
"chat_template": "{%- if tools %}\n {%- if messages[0]['role'] == 'system' %}\n {{-'<_system>'+messages[0]['content'] }}\n {%- else %}\n {{- '<_system>'+'你是中国电信星辰语义大模型,英文名是TeleChat,你是由中电信人工智能科技有限公司和中国电信人工智能研究院(TeleAI)研发的人工智能助手。' }}\n {%- endif %}\n {{- '\\n\\n# 可用工具\\n你可以调用<tools></tools>标签中包含的一个或多个工具来辅助你回答问题,以下是可用工具详情:\\n<tools>\\n' }}\n {%- for tool in tools %}\n {{- tool | tojson }}\n {{-'\\n'}}\n {%- endfor %}\n {{- '</tools>\\n\\n# 调用方法\\n你需要遵循工具的要求,使用json格式返回工具名称及参数,并用<tool_call></tool_call>包含。下方是一个调用模板:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call>\\n\\n' }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<_system>' + messages[0]['content'] + '\\n' }}\n {%- else %}\n {{- '<_system>'+'你是中国电信星辰语义大模型,英文名是TeleChat,你是由中电信人工智能科技有限公司和中国电信人工智能研究院(TeleAI)研发的人工智能助手。\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == 'user') %}\n {{- '<_user>' + message.content }}\n {%- elif message.role == 'bot' %}\n {{- '<_bot>' }}\n {%- if message.content %}\n {{- message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {%- if loop.index0 == 0 %}\n {{-'<tool_call>'}}\n {%- else %}\n {{-'\\n<tool_call>'}}\n {%- endif %}\n {{- '\\n{\"name\": \"' }}{{ tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<_end>\\n' }}\n {%- elif message.role == 'tool' %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != 'tool') %}\n {{- '<_user>'+'<tool_response>\\n' }}\n {%- else %}\n {{- '\\n<tool_response>\\n' }}\n {%- endif %}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<_bot>' }}\n{%- endif %}"
|
114 |
+
}
|