--- license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: cont-vvt-gs-rot-flip-wtoken-f198-4.4-h768-t8.16.16 results: [] --- # cont-vvt-gs-rot-flip-wtoken-f198-4.4-h768-t8.16.16 This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6569 - Accuracy: 0.7407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.868 | 0.0402 | 221 | 0.7216 | 0.6931 | | 0.715 | 1.0402 | 442 | 0.6954 | 0.7037 | | 0.7041 | 2.0402 | 663 | 0.7269 | 0.7460 | | 0.5228 | 3.0402 | 884 | 0.7158 | 0.7407 | | 0.7336 | 4.0402 | 1105 | 0.6833 | 0.7196 | | 0.5987 | 5.0402 | 1326 | 0.6155 | 0.7725 | | 0.8574 | 6.0402 | 1547 | 0.6601 | 0.7302 | | 0.6805 | 7.0402 | 1768 | 0.6374 | 0.7460 | | 0.8086 | 8.0402 | 1989 | 0.6896 | 0.6984 | | 0.6552 | 9.0402 | 2210 | 0.6535 | 0.7090 | | 0.7846 | 10.0402 | 2431 | 0.6646 | 0.7354 | | 0.6114 | 11.0402 | 2652 | 0.6111 | 0.7619 | | 0.7435 | 12.0402 | 2873 | 0.6779 | 0.7354 | | 0.7742 | 13.0402 | 3094 | 0.7390 | 0.6878 | | 0.6558 | 14.0402 | 3315 | 0.6284 | 0.7354 | | 0.4822 | 15.0402 | 3536 | 0.7071 | 0.7196 | | 0.7686 | 16.0402 | 3757 | 0.6982 | 0.7302 | | 0.7945 | 17.0402 | 3978 | 0.6336 | 0.7566 | | 0.5755 | 18.0402 | 4199 | 0.5924 | 0.7460 | | 0.6895 | 19.0402 | 4420 | 0.6227 | 0.7513 | | 0.4775 | 20.0402 | 4641 | 0.5846 | 0.7672 | | 0.8137 | 21.0402 | 4862 | 0.6724 | 0.7354 | | 0.4226 | 22.0402 | 5083 | 0.6772 | 0.7460 | | 0.6616 | 23.0402 | 5304 | 0.6856 | 0.7407 | | 0.5246 | 24.0356 | 5500 | 0.6569 | 0.7407 | ### Framework versions - Transformers 4.41.2 - Pytorch 1.13.0+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1