Text-to-Image
File size: 24,144 Bytes
ef7c6c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import math
from dataclasses import dataclass


import torch
from einops import rearrange, repeat
from torch import Tensor, nn

import torch.nn.functional as F

import torch
from einops import rearrange


def attention(q, k, v, pe):
    q, k = apply_rope(q, k, pe)

    x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
    x = rearrange(x, "B H L D -> B L (H D)")

    return x


def rope(pos, dim: int, theta: int):
    assert dim % 2 == 0
    scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
    omega = 1.0 / (theta**scale)
    out = torch.einsum("...n,d->...nd", pos, omega)
    out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
    out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
    return out.float()


def apply_rope(xq, xk, freqs_cis):
    xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
    xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
    xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
    xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
    return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

    
class EmbedND(nn.Module):
    def __init__(self, dim: int, theta: int, axes_dim: list[int]):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: Tensor):
        n_axes = ids.shape[-1]
        emb = torch.cat(
            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
            dim=-3,
        )
        return emb.unsqueeze(1)


def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
    """
    Create sinusoidal timestep embeddings.
    :param t: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an (N, D) Tensor of positional embeddings.
    """
    t = time_factor * t
    half = dim // 2
    freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
        t.device)

    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    if torch.is_floating_point(t):
        embedding = embedding.to(t)
    return embedding


class MLPEmbedder(nn.Module):
    def __init__(self, in_dim: int, hidden_dim: int):
        super().__init__()
        self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
        self.silu = nn.SiLU()
        self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)

    def forward(self, x: Tensor):
        return self.out_layer(self.silu(self.in_layer(x)))


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.scale = nn.Parameter(torch.ones(dim))

    def forward(self, x: Tensor):
        x_dtype = x.dtype
        x = x.float()
        rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
        return (x * rrms).to(dtype=x_dtype) * self.scale


class QKNorm(torch.nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.query_norm = RMSNorm(dim)
        self.key_norm = RMSNorm(dim)

    def forward(self, q: Tensor, k: Tensor, v: Tensor):
        q = self.query_norm(q)
        k = self.key_norm(k)
        return q.to(v), k.to(v)

class LoRALinearLayer(nn.Module):
    def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None):
        super().__init__()

        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)

class FLuxSelfAttnProcessor:
    def __call__(self, attn, x, pe, **attention_kwargs):
        print('2' * 30)

        qkv = attn.qkv(x)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        q, k = attn.norm(q, k, v)
        x = attention(q, k, v, pe=pe)
        x = attn.proj(x)
        return x

class LoraFluxAttnProcessor(nn.Module):

    def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
        super().__init__()
        self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
        self.proj_lora = LoRALinearLayer(dim, dim, rank, network_alpha)
        self.lora_weight = lora_weight


    def __call__(self, attn, x, pe, **attention_kwargs):
        qkv = attn.qkv(x) + self.qkv_lora(x) * self.lora_weight
        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        q, k = attn.norm(q, k, v)
        x = attention(q, k, v, pe=pe)
        x = attn.proj(x) + self.proj_lora(x) * self.lora_weight
        print('1' * 30)
        print(x.norm(), (self.proj_lora(x) * self.lora_weight).norm(), 'norm')
        return x

class SelfAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.norm = QKNorm(head_dim)
        self.proj = nn.Linear(dim, dim)
    def forward():
        pass


@dataclass
class ModulationOut:
    shift: Tensor
    scale: Tensor
    gate: Tensor


class Modulation(nn.Module):
    def __init__(self, dim: int, double: bool):
        super().__init__()
        self.is_double = double
        self.multiplier = 6 if double else 3
        self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)

    def forward(self, vec: Tensor):
        out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)

        return (
            ModulationOut(*out[:3]),
            ModulationOut(*out[3:]) if self.is_double else None,
        )

class DoubleStreamBlockLoraProcessor(nn.Module):
    def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
        super().__init__()
        self.qkv_lora1 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
        self.proj_lora1 = LoRALinearLayer(dim, dim, rank, network_alpha)
        self.qkv_lora2 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
        self.proj_lora2 = LoRALinearLayer(dim, dim, rank, network_alpha)
        self.lora_weight = lora_weight

    def __call__(self, attn, img, txt, vec, pe):
            
        img_mod1, img_mod2 = attn.img_mod(vec)
        txt_mod1, txt_mod2 = attn.txt_mod(vec)

        # prepare image for attention
        img_modulated = attn.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = attn.img_attn.qkv(img_modulated) + self.qkv_lora1(img_modulated) * self.lora_weight
        img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
        img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)

        # prepare txt for attention
        txt_modulated = attn.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = attn.txt_attn.qkv(txt_modulated) + self.qkv_lora2(txt_modulated) * self.lora_weight
        txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
        txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)

        # run actual attention
        q = torch.cat((txt_q, img_q), dim=2)
        k = torch.cat((txt_k, img_k), dim=2)
        v = torch.cat((txt_v, img_v), dim=2)

        attn1 = attention(q, k, v, pe=pe)
        txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]

        # calculate the img bloks
        img = img + img_mod1.gate * attn.img_attn.proj(img_attn) + img_mod1.gate * self.proj_lora1(img_attn) * self.lora_weight
        img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)

        # calculate the txt bloks
        txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn) + txt_mod1.gate * self.proj_lora2(txt_attn) * self.lora_weight
        txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)

        return img, txt

class IPDoubleStreamBlockProcessor(nn.Module):
    """Attention processor for handling IP-adapter with double stream block."""

    def __init__(self, context_dim, hidden_dim):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "IPDoubleStreamBlockProcessor requires PyTorch 2.0 or higher. Please upgrade PyTorch."
            )

        # Ensure context_dim matches the dimension of image_proj
        self.context_dim = context_dim
        self.hidden_dim = hidden_dim

        # Initialize projections for IP-adapter
        self.ip_adapter_double_stream_k_proj = nn.Linear(context_dim, hidden_dim, bias=True)
        self.ip_adapter_double_stream_v_proj = nn.Linear(context_dim, hidden_dim, bias=True)

        nn.init.zeros_(self.ip_adapter_double_stream_k_proj.weight)
        nn.init.zeros_(self.ip_adapter_double_stream_k_proj.bias)

        nn.init.zeros_(self.ip_adapter_double_stream_v_proj.weight)
        nn.init.zeros_(self.ip_adapter_double_stream_v_proj.bias)

    def __call__(self, attn, img, txt, vec, pe, image_proj, ip_scale=1.0, **attention_kwargs):

        # Prepare image for attention
        img_mod1, img_mod2 = attn.img_mod(vec)
        txt_mod1, txt_mod2 = attn.txt_mod(vec)

        img_modulated = attn.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = attn.img_attn.qkv(img_modulated)
        img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
        img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)

        txt_modulated = attn.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = attn.txt_attn.qkv(txt_modulated)
        txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
        txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)

        q = torch.cat((txt_q, img_q), dim=2)
        k = torch.cat((txt_k, img_k), dim=2)
        v = torch.cat((txt_v, img_v), dim=2)

        attn1 = attention(q, k, v, pe=pe)
        txt_attn, img_attn = attn1[:, :txt.shape[1]], attn1[:, txt.shape[1]:]

        img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
        img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)

        txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
        txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)

        # IP-adapter processing
        ip_query = img_q  # latent sample query
        ip_key = self.ip_adapter_double_stream_k_proj(image_proj)
        ip_value = self.ip_adapter_double_stream_v_proj(image_proj)

        # Reshape projections for multi-head attention
        ip_key = rearrange(ip_key, 'B L (H D) -> B H L D', H=attn.num_heads, D=attn.head_dim)
        ip_value = rearrange(ip_value, 'B L (H D) -> B H L D', H=attn.num_heads, D=attn.head_dim)

        # Compute attention between IP projections and the latent query
        ip_attention = F.scaled_dot_product_attention(
            ip_query,
            ip_key,
            ip_value,
            dropout_p=0.0,
            is_causal=False
        )
        ip_attention = rearrange(ip_attention, "B H L D -> B L (H D)", H=attn.num_heads, D=attn.head_dim)

        img = img + ip_scale * ip_attention

        return img, txt

class DoubleStreamBlockProcessor:
    def __call__(self, attn, img, txt, vec, pe):

        img_mod1, img_mod2 = attn.img_mod(vec)
        txt_mod1, txt_mod2 = attn.txt_mod(vec)

        # prepare image for attention
        img_modulated = attn.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = attn.img_attn.qkv(img_modulated)
        img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
        img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)

        # prepare txt for attention
        txt_modulated = attn.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = attn.txt_attn.qkv(txt_modulated)
        txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
        txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)

        # run actual attention
        q = torch.cat((txt_q, img_q), dim=2)
        k = torch.cat((txt_k, img_k), dim=2)
        v = torch.cat((txt_v, img_v), dim=2)

        attn1 = attention(q, k, v, pe=pe)
        txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]

        # calculate the img bloks
        img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
        img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)

        # calculate the txt bloks
        txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
        txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
        
        return img, txt


class DoubleStreamBlock(nn.Module):
    def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
        super().__init__()
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.head_dim = hidden_size // num_heads

        self.img_mod = Modulation(hidden_size, double=True)
        self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

        self.txt_mod = Modulation(hidden_size, double=True)
        self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

        processor = DoubleStreamBlockProcessor()
        self.set_processor(processor)

    def set_processor(self, processor):
        self.processor = processor

    def get_processor(self):
        return self.processor

    def forward(
        self,
        img: Tensor,
        txt: Tensor,
        vec: Tensor,
        pe: Tensor,
        image_proj: Tensor = None,
        ip_scale: float =1.0,
    ):
        if image_proj is None:
            return self.processor(self, img, txt, vec, pe)
        else:
            return self.processor(self, img, txt, vec, pe, image_proj, ip_scale)


class IPSingleStreamBlockProcessor(nn.Module):
    """Attention processor for handling IP-adapter with single stream block."""
    def __init__(self, context_dim, hidden_dim):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "IPSingleStreamBlockProcessor requires PyTorch 2.0 or higher. Please upgrade PyTorch."
            )

        # Ensure context_dim matches the dimension of image_proj
        self.context_dim = context_dim
        self.hidden_dim = hidden_dim

        # Initialize projections for IP-adapter
        self.ip_adapter_single_stream_k_proj = nn.Linear(context_dim, hidden_dim, bias=False)
        self.ip_adapter_single_stream_v_proj = nn.Linear(context_dim, hidden_dim, bias=False)

        nn.init.zeros_(self.ip_adapter_single_stream_k_proj.weight)
        nn.init.zeros_(self.ip_adapter_single_stream_v_proj.weight)

    def __call__(
        self,
        attn: nn.Module,
        x: Tensor,
        vec: Tensor,
        pe: Tensor,
        image_proj: Tensor = None,
        ip_scale: float = 1.0
    ):

        mod, _ = attn.modulation(vec)
        x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)

        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
        q, k = attn.norm(q, k, v)

        # compute attention
        attn_1 = attention(q, k, v, pe=pe)

        # IP-adapter processing
        ip_query = q
        ip_key = self.ip_adapter_single_stream_k_proj(image_proj)
        ip_value = self.ip_adapter_single_stream_v_proj(image_proj)

        # Reshape projections for multi-head attention
        ip_key = rearrange(ip_key, 'B L (H D) -> B H L D', H=attn.num_heads, D=attn.head_dim)
        ip_value = rearrange(ip_value, 'B L (H D) -> B H L D', H=attn.num_heads, D=attn.head_dim)


        # Compute attention between IP projections and the latent query
        ip_attention = F.scaled_dot_product_attention(
            ip_query,
            ip_key,
            ip_value
        )
        ip_attention = rearrange(ip_attention, "B H L D -> B L (H D)")

        attn_out = attn_1 + ip_scale * ip_attention

        # compute activation in mlp stream, cat again and run second linear layer
        output = attn.linear2(torch.cat((attn_out, attn.mlp_act(mlp)), 2))
        out = x + mod.gate * output

        return out


class SingleStreamBlockLoraProcessor(nn.Module):
    def __init__(self, dim: int, rank: int = 4, network_alpha = None, lora_weight: float = 1):
        super().__init__()
        self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
        self.proj_lora = LoRALinearLayer(dim, dim, rank, network_alpha)
        self.lora_weight = lora_weight

    def __call__(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor):

        mod, _ = attn.modulation(vec)
        x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)
        qkv = qkv + self.qkv_lora(x_mod) * self.lora_weight

        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
        q, k = attn.norm(q, k, v)

        # compute attention
        attn_1 = attention(q, k, v, pe=pe)

        # compute activation in mlp stream, cat again and run second linear layer
        output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
        output = output + self.proj_lora(output) * self.lora_weight
        output = x + mod.gate * output

        return output


class SingleStreamBlockProcessor:
    def __call__(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor):

        mod, _ = attn.modulation(vec)
        x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)

        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
        q, k = attn.norm(q, k, v)

        # compute attention
        attn_1 = attention(q, k, v, pe=pe)

        # compute activation in mlp stream, cat again and run second linear layer
        output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
        output = x + mod.gate * output

        return output


class SingleStreamBlock(nn.Module):
    """
    A DiT block with parallel linear layers as described in
    https://arxiv.org/abs/2302.05442 and adapted modulation interface.
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qk_scale: float = None,
    ):
        super().__init__()
        self.hidden_dim = hidden_size
        self.num_heads = num_heads
        self.head_dim = hidden_size // num_heads
        self.scale = qk_scale or self.head_dim**-0.5

        self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
        # qkv and mlp_in
        self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
        # proj and mlp_out
        self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)

        self.norm = QKNorm(self.head_dim)

        self.hidden_size = hidden_size
        self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)

        self.mlp_act = nn.GELU(approximate="tanh")
        self.modulation = Modulation(hidden_size, double=False)

        processor = SingleStreamBlockProcessor()
        self.set_processor(processor)


    def set_processor(self, processor):
        self.processor = processor

    def get_processor(self):
        return self.processor

    def forward(
        self,
        x: Tensor,
        vec: Tensor,
        pe: Tensor,
        image_proj: Tensor = None,
        ip_scale: float = 1.0
    ):
        if image_proj is None:
            return self.processor(self, x, vec, pe)
        else:
            return self.processor(self, x, vec, pe, image_proj, ip_scale)


class LastLayer(nn.Module):
    def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))

    def forward(self, x: Tensor, vec: Tensor) -> Tensor:
        shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
        x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
        x = self.linear(x)
        return x


class ImageProjModel(torch.nn.Module):
    """Projection Model
    https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/ip_adapter.py#L28
    """
    

    def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
        super().__init__()

        self.generator = None
        self.cross_attention_dim = cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
        self.norm = torch.nn.LayerNorm(cross_attention_dim)

    def forward(self, image_embeds):
        embeds = image_embeds
        clip_extra_context_tokens = self.proj(embeds).reshape(
            -1, self.clip_extra_context_tokens, self.cross_attention_dim
        )
        clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
        return clip_extra_context_tokens