Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
8 |
+
|
9 |
+
from model import Flux
|
10 |
+
|
11 |
+
def calculate_shift(
|
12 |
+
image_seq_len,
|
13 |
+
base_seq_len: int = 256,
|
14 |
+
max_seq_len: int = 4096,
|
15 |
+
base_shift: float = 0.5,
|
16 |
+
max_shift: float = 1.16,
|
17 |
+
):
|
18 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
19 |
+
b = base_shift - m * base_seq_len
|
20 |
+
mu = image_seq_len * m + b
|
21 |
+
return mu
|
22 |
+
|
23 |
+
|
24 |
+
def retrieve_timesteps(
|
25 |
+
scheduler,
|
26 |
+
num_inference_steps: Optional[int] = None,
|
27 |
+
device: Optional[Union[str, torch.device]] = None,
|
28 |
+
timesteps: Optional[List[int]] = None,
|
29 |
+
sigmas: Optional[List[float]] = None,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
if timesteps is not None and sigmas is not None:
|
33 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
34 |
+
if timesteps is not None:
|
35 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
36 |
+
timesteps = scheduler.timesteps
|
37 |
+
num_inference_steps = len(timesteps)
|
38 |
+
elif sigmas is not None:
|
39 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
40 |
+
timesteps = scheduler.timesteps
|
41 |
+
num_inference_steps = len(timesteps)
|
42 |
+
else:
|
43 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
44 |
+
timesteps = scheduler.timesteps
|
45 |
+
return timesteps, num_inference_steps
|
46 |
+
|
47 |
+
|
48 |
+
@torch.inference_mode()
|
49 |
+
def flux_pipe_call_that_returns_an_iterable_of_images(
|
50 |
+
self,
|
51 |
+
prompt: Union[str, List[str]] = None,
|
52 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
53 |
+
height: Optional[int] = None,
|
54 |
+
width: Optional[int] = None,
|
55 |
+
num_inference_steps: int = 28,
|
56 |
+
timesteps: List[int] = None,
|
57 |
+
guidance_scale: float = 3.5,
|
58 |
+
num_images_per_prompt: Optional[int] = 1,
|
59 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
60 |
+
latents: Optional[torch.FloatTensor] = None,
|
61 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
62 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
63 |
+
output_type: Optional[str] = "pil",
|
64 |
+
return_dict: bool = True,
|
65 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
66 |
+
max_sequence_length: int = 512,
|
67 |
+
good_vae: Optional[Any] = None,
|
68 |
+
):
|
69 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
70 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
71 |
+
|
72 |
+
# 1. Check inputs
|
73 |
+
self.check_inputs(
|
74 |
+
prompt,
|
75 |
+
prompt_2,
|
76 |
+
height,
|
77 |
+
width,
|
78 |
+
prompt_embeds=prompt_embeds,
|
79 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
80 |
+
max_sequence_length=max_sequence_length,
|
81 |
+
)
|
82 |
+
|
83 |
+
self._guidance_scale = guidance_scale
|
84 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
85 |
+
self._interrupt = False
|
86 |
+
|
87 |
+
# 2. Define call parameters
|
88 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
89 |
+
device = self._execution_device
|
90 |
+
|
91 |
+
# 3. Encode prompt
|
92 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
93 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
94 |
+
prompt=prompt,
|
95 |
+
prompt_2=prompt_2,
|
96 |
+
prompt_embeds=prompt_embeds,
|
97 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
98 |
+
device=device,
|
99 |
+
num_images_per_prompt=num_images_per_prompt,
|
100 |
+
max_sequence_length=max_sequence_length,
|
101 |
+
lora_scale=lora_scale,
|
102 |
+
)
|
103 |
+
# 4. Prepare latent variables
|
104 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
105 |
+
latents, latent_image_ids = self.prepare_latents(
|
106 |
+
batch_size * num_images_per_prompt,
|
107 |
+
num_channels_latents,
|
108 |
+
height,
|
109 |
+
width,
|
110 |
+
prompt_embeds.dtype,
|
111 |
+
device,
|
112 |
+
generator,
|
113 |
+
latents,
|
114 |
+
)
|
115 |
+
# 5. Prepare timesteps
|
116 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
117 |
+
image_seq_len = latents.shape[1]
|
118 |
+
mu = calculate_shift(
|
119 |
+
image_seq_len,
|
120 |
+
self.scheduler.config.base_image_seq_len,
|
121 |
+
self.scheduler.config.max_image_seq_len,
|
122 |
+
self.scheduler.config.base_shift,
|
123 |
+
self.scheduler.config.max_shift,
|
124 |
+
)
|
125 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
126 |
+
self.scheduler,
|
127 |
+
num_inference_steps,
|
128 |
+
device,
|
129 |
+
timesteps,
|
130 |
+
sigmas,
|
131 |
+
mu=mu,
|
132 |
+
)
|
133 |
+
self._num_timesteps = len(timesteps)
|
134 |
+
|
135 |
+
# Handle guidance
|
136 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
137 |
+
|
138 |
+
# 6. Denoising loop
|
139 |
+
for i, t in enumerate(timesteps):
|
140 |
+
if self.interrupt:
|
141 |
+
continue
|
142 |
+
|
143 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
144 |
+
|
145 |
+
noise_pred = self.transformer(
|
146 |
+
hidden_states=latents,
|
147 |
+
timestep=timestep / 1000,
|
148 |
+
guidance=guidance,
|
149 |
+
pooled_projections=pooled_prompt_embeds,
|
150 |
+
encoder_hidden_states=prompt_embeds,
|
151 |
+
txt_ids=text_ids,
|
152 |
+
img_ids=latent_image_ids,
|
153 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
154 |
+
return_dict=False,
|
155 |
+
)[0]
|
156 |
+
# Yield intermediate result
|
157 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
158 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
159 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
160 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
161 |
+
|
162 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
163 |
+
torch.cuda.empty_cache()
|
164 |
+
|
165 |
+
# Final image using good_vae
|
166 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
167 |
+
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
168 |
+
image = good_vae.decode(latents, return_dict=False)[0]
|
169 |
+
self.maybe_free_model_hooks()
|
170 |
+
torch.cuda.empty_cache()
|
171 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
172 |
+
|
173 |
+
|
174 |
+
@dataclass
|
175 |
+
class ModelSpec:
|
176 |
+
params: FluxParams
|
177 |
+
ae_params: AutoEncoderParams
|
178 |
+
ckpt_path: str
|
179 |
+
ae_path: str
|
180 |
+
repo_id: str
|
181 |
+
repo_flow: str
|
182 |
+
repo_ae: str
|
183 |
+
repo_id_ae: str
|
184 |
+
|
185 |
+
config = ModelSpec(
|
186 |
+
repo_id="TencentARC/flux-mini",
|
187 |
+
repo_flow="flux-mini.safetensors",
|
188 |
+
repo_id_ae="black-forest-labs/FLUX.1-dev",
|
189 |
+
repo_ae="ae.safetensors",
|
190 |
+
ckpt_path=os.getenv("FLUX_MINI", None),
|
191 |
+
params=FluxParams(
|
192 |
+
in_channels=64,
|
193 |
+
vec_in_dim=768,
|
194 |
+
context_in_dim=4096,
|
195 |
+
hidden_size=3072,
|
196 |
+
mlp_ratio=4.0,
|
197 |
+
num_heads=24,
|
198 |
+
depth=5,
|
199 |
+
depth_single_blocks=10,
|
200 |
+
axes_dim=[16, 56, 56],
|
201 |
+
theta=10_000,
|
202 |
+
qkv_bias=True,
|
203 |
+
guidance_embed=True,
|
204 |
+
)
|
205 |
+
|
206 |
+
|
207 |
+
def load_flow_model2(device: str = "cuda", hf_download: bool = True):
|
208 |
+
if (
|
209 |
+
and config.repo_id is not None
|
210 |
+
and config.repo_flow is not None
|
211 |
+
and hf_download
|
212 |
+
):
|
213 |
+
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors"))
|
214 |
+
|
215 |
+
model = Flux(params)
|
216 |
+
if ckpt_path is not None:
|
217 |
+
sd = load_sft(ckpt_path, device=str(device))
|
218 |
+
missing, unexpected = model.load_state_dict(sd, strict=True)
|
219 |
+
return model
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
dtype = torch.bfloat16
|
225 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
226 |
+
|
227 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="scheduler").to(device)
|
228 |
+
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
229 |
+
text_encoder = CLIPTextModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder").to(device)
|
230 |
+
tokenizer = CLIPTokenizer.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="tokenizer").to(device)
|
231 |
+
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2").to(device)
|
232 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="tokenizer_2").to(device)
|
233 |
+
transformer = load_flow_model2(device)
|
234 |
+
|
235 |
+
pipe = FluxPipeline(
|
236 |
+
scheduler,
|
237 |
+
vae,
|
238 |
+
text_encoder,
|
239 |
+
tokenizer,
|
240 |
+
text_encoder_2,
|
241 |
+
tokenizer_2
|
242 |
+
transformer
|
243 |
+
)
|
244 |
+
torch.cuda.empty_cache()
|
245 |
+
|
246 |
+
MAX_SEED = np.iinfo(np.int32).max
|
247 |
+
MAX_IMAGE_SIZE = 2048
|
248 |
+
|
249 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
250 |
+
|
251 |
+
@spaces.GPU(duration=75)
|
252 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
253 |
+
if randomize_seed:
|
254 |
+
seed = random.randint(0, MAX_SEED)
|
255 |
+
generator = torch.Generator().manual_seed(seed)
|
256 |
+
|
257 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
258 |
+
prompt=prompt,
|
259 |
+
guidance_scale=guidance_scale,
|
260 |
+
num_inference_steps=num_inference_steps,
|
261 |
+
width=width,
|
262 |
+
height=height,
|
263 |
+
generator=generator,
|
264 |
+
output_type="pil",
|
265 |
+
good_vae=good_vae,
|
266 |
+
):
|
267 |
+
yield img, seed
|
268 |
+
|
269 |
+
examples = [
|
270 |
+
"thousands of luminous oysters on a shore reflecting and refracting the sunset",
|
271 |
+
"profile of sad Socrates, full body, high detail, dramatic scene, Epic dynamic action, wide angle, cinematic, hyper realistic, concept art, warm muted tones as painted by Bernie Wrightson, Frank Frazetta,",
|
272 |
+
"ghosts, astronauts, robots, cats, superhero costumes, line drawings, naive, simple, exploring a strange planet, coloured pencil crayons, , black canvas background, drawn by 5 year old child",
|
273 |
+
]
|
274 |
+
|
275 |
+
css="""
|
276 |
+
#col-container {
|
277 |
+
margin: 0 auto;
|
278 |
+
max-width: 520px;
|
279 |
+
}
|
280 |
+
"""
|
281 |
+
|
282 |
+
with gr.Blocks(css=css) as demo:
|
283 |
+
|
284 |
+
with gr.Column(elem_id="col-container"):
|
285 |
+
gr.Markdown(f"""# FLUX-Mini
|
286 |
+
A 3.2B param rectified flow transformer distilled from [FLUX.1 [dev]](https://blackforestlabs.ai/)
|
287 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]
|
288 |
+
""")
|
289 |
+
|
290 |
+
with gr.Row():
|
291 |
+
|
292 |
+
prompt = gr.Text(
|
293 |
+
label="Prompt",
|
294 |
+
show_label=False,
|
295 |
+
max_lines=1,
|
296 |
+
placeholder="Enter your prompt",
|
297 |
+
container=False,
|
298 |
+
)
|
299 |
+
|
300 |
+
run_button = gr.Button("Run", scale=0)
|
301 |
+
|
302 |
+
result = gr.Image(label="Result", show_label=False)
|
303 |
+
|
304 |
+
with gr.Accordion("Advanced Settings", open=False):
|
305 |
+
|
306 |
+
seed = gr.Slider(
|
307 |
+
label="Seed",
|
308 |
+
minimum=0,
|
309 |
+
maximum=MAX_SEED,
|
310 |
+
step=1,
|
311 |
+
value=0,
|
312 |
+
)
|
313 |
+
|
314 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
315 |
+
|
316 |
+
with gr.Row():
|
317 |
+
|
318 |
+
width = gr.Slider(
|
319 |
+
label="Width",
|
320 |
+
minimum=256,
|
321 |
+
maximum=MAX_IMAGE_SIZE,
|
322 |
+
step=32,
|
323 |
+
value=1024,
|
324 |
+
)
|
325 |
+
|
326 |
+
height = gr.Slider(
|
327 |
+
label="Height",
|
328 |
+
minimum=256,
|
329 |
+
maximum=MAX_IMAGE_SIZE,
|
330 |
+
step=32,
|
331 |
+
value=1024,
|
332 |
+
)
|
333 |
+
|
334 |
+
with gr.Row():
|
335 |
+
|
336 |
+
guidance_scale = gr.Slider(
|
337 |
+
label="Guidance Scale",
|
338 |
+
minimum=1,
|
339 |
+
maximum=15,
|
340 |
+
step=0.1,
|
341 |
+
value=3.5,
|
342 |
+
)
|
343 |
+
|
344 |
+
num_inference_steps = gr.Slider(
|
345 |
+
label="Number of inference steps",
|
346 |
+
minimum=1,
|
347 |
+
maximum=50,
|
348 |
+
step=1,
|
349 |
+
value=28,
|
350 |
+
)
|
351 |
+
|
352 |
+
gr.Examples(
|
353 |
+
examples = examples,
|
354 |
+
fn = infer,
|
355 |
+
inputs = [prompt],
|
356 |
+
outputs = [result, seed],
|
357 |
+
cache_examples="lazy"
|
358 |
+
)
|
359 |
+
|
360 |
+
gr.on(
|
361 |
+
triggers=[run_button.click, prompt.submit],
|
362 |
+
fn = infer,
|
363 |
+
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
364 |
+
outputs = [result, seed]
|
365 |
+
)
|
366 |
+
|
367 |
+
demo.launch()
|