File size: 4,418 Bytes
1e7ceee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e653e9
 
 
 
 
1e7ceee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e653e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: A photo of <s0><s1>
  output:
    url: image-0.png
- text: A photo of <s0><s1>
  output:
    url: image-1.png
- text: A photo of <s0><s1>
  output:
    url: image-2.png
- text: A photo of <s0><s1>
  output:
    url: image-3.png
- text: A photo of <s0><s1>
  output:
    url: image-4.png
- text: A photo of <s0><s1>
  output:
    url: image-5.png
- text: A photo of <s0><s1>
  output:
    url: image-6.png
- text: A photo of <s0><s1>
  output:
    url: image-7.png
- text: A photo of <s0><s1>
  output:
    url: image-8.png
- text: A photo of <s0><s1>
  output:
    url: image-9.png
- text: A photo of <s0><s1>
  output:
    url: image-10.png
- text: A photo of <s0><s1>
  output:
    url: image-11.png
- text: A photo of <s0><s1>
  output:
    url: image-12.png
- text: A photo of <s0><s1>
  output:
    url: image-13.png
- text: A photo of <s0><s1>
  output:
    url: image-14.png
- text: A photo of <s0><s1>
  output:
    url: image-15.png
- text: A photo of <s0><s1>
  output:
    url: image-16.png
- text: A photo of <s0><s1>
  output:
    url: image-17.png
- text: A photo of <s0><s1>
  output:
    url: image-18.png
- text: A photo of <s0><s1>
  output:
    url: image-19.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A photo of <s0><s1>
license: openrail++
language:
- ru
- en
- uk
- it
---

# SDXL LoRA DreamBooth - Terapevt1981/mia-lora-01-2807

<Gallery />

## Model description

### These are Terapevt1981/mia-lora-01-2807 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

## Download model

### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

- **LoRA**: download **[`mia-lora-01-2807.safetensors` here 💾](/Terapevt1981/mia-lora-01-2807/blob/main/mia-lora-01-2807.safetensors)**.
    - Place it on your `models/Lora` folder.
    - On AUTOMATIC1111, load the LoRA by adding `<lora:mia-lora-01-2807:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`mia-lora-01-2807_emb.safetensors` here 💾](/Terapevt1981/mia-lora-01-2807/blob/main/mia-lora-01-2807_emb.safetensors)**.
    - Place it on it on your `embeddings` folder
    - Use it by adding `mia-lora-01-2807_emb` to your prompt. For example, `A photo of mia-lora-01-2807_emb`
    (you need both the LoRA and the embeddings as they were trained together for this LoRA)
    

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Terapevt1981/mia-lora-01-2807', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='Terapevt1981/mia-lora-01-2807', filename='mia-lora-01-2807_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('A photo of <s0><s1>').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)

## Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept `TOK` → use `<s0><s1>` in your prompt 



## Details
All [Files & versions](/Terapevt1981/mia-lora-01-2807/tree/main).

The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.