File size: 3,955 Bytes
d44e076
 
 
 
 
 
 
 
ab17beb
 
 
 
d44e076
 
 
4615351
 
 
 
 
d44e076
 
 
 
 
 
 
4e19526
d44e076
4615351
1aa67e7
4615351
 
 
 
 
1aa67e7
 
4615351
 
 
1aa67e7
4615351
 
1aa67e7
4615351
 
 
 
 
1aa67e7
4615351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3830887
 
 
bfb6d4c
3830887
bfb6d4c
3830887
4615351
d44e076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: TheBloke/typhoon-7B-GPTQ
model_creator: SCB 10X
model_name: Typhoon 7B
model_type: mistral

model-index:
- name: typhoon-7b-chat-alpaca
  results: []
datasets:
- Thaweewat/alpaca-cleaned-52k-th
language:
- th
pipeline_tag: text-generation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# typhoon-7b-chat-alpaca

This model is a fine-tuned version of [TheBloke/typhoon-7B-GPTQ](https://huggingface.co/TheBloke/typhoon-7B-GPTQ) on the [Alpaca-TH](https://huggingface.co/datasets/Thaweewat/alpaca-cleaned-52k-th) dataset.

## Usage

```python
from peft import AutoPeftModelForCausalLM
from transformers import GenerationConfig, AutoTokenizer
import torch
import time


def generate_response(input_text: str) -> str:
    """
    Generate a response for the given input text using the Typhoon-7B model.

    Parameters:
    input_text (str): The input text prompt.

    Returns:
    str: The generated response.
    """
    # Initialize the tokenizer and model only once
    tokenizer = AutoTokenizer.from_pretrained("Thaweewat/typhoon-7b-chat-alpaca")

    model = AutoPeftModelForCausalLM.from_pretrained(
        "Thaweewat/typhoon-7b-chat-alpaca",
        low_cpu_mem_usage=True,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map="cuda")

    generation_config = GenerationConfig(
        do_sample=True,
        top_k=1,
        temperature=0.5,
        max_new_tokens=300, 
        pad_token_id=tokenizer.eos_token_id)

    # Tokenize input
    inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

    # Generate outputs
    st_time = time.time()
    outputs = model.generate(**inputs, generation_config=generation_config)

    # Decode and print response
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f"Response time: {time.time() - st_time} seconds")
    return response

# Sample usage:
input_text = "###Human: ใครคือนายกไทยคนปัจจุบัน ###Assistant: "
print(generate_response(input_text))

"""
นายกรัฐมนตรีคนปัจจุบันของไทยคือพลเอกประยุทธ์ จันทร์โอชา เขาดำรงตำแหน่งนี้ตั้งแต่เดือนสิงหาคม 2557
และได้รับเลือกอีกครั้งในการเลือกตั้งทั่วไปในปี 2562 เขาเป็นนายทหารที่เกษียณอายุแล้วและเคยดำรงตำแหน่งผู้บัญชาการ
ทหารบกและผู้บัญชาการทหารสูงสุดมาก่อน เขาเป็นผู้นำรัฐบาลทหารตั้งแต่เดือนพฤษภาคม 2557 จนถึงเดือนธันวาคม 2559
และเป็นผู้นำรัฐบาลพลเรือนตั้งแต่เดือนธันวาคม 2559 จนถึงปัจจุบัน เขาเป็นผู้นำรัฐบาลที่ดำรงตำแหน่งยาวนานที่สุดในประวัติศาสตร์ของไทย
"""
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- mixed_precision_training: Native AMP

### Framework versions

- PEFT 0.7.1
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0