TheBloke commited on
Commit
4e6bc00
1 Parent(s): b1e2b2b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -17
README.md CHANGED
@@ -1,10 +1,22 @@
1
  ---
 
2
  inference: false
3
  license: llama2
4
  model_creator: CalderaAI
5
- model_link: https://huggingface.co/CalderaAI/13B-Legerdemain-L2
6
  model_name: 13B Legerdemain L2
7
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
8
  quantized_by: TheBloke
9
  ---
10
 
@@ -40,9 +52,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
40
  <!-- repositories-available start -->
41
  ## Repositories available
42
 
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ)
44
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GGUF)
45
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GGML)
46
  * [CalderaAI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/CalderaAI/13B-Legerdemain-L2)
47
  <!-- repositories-available end -->
48
 
@@ -61,6 +73,7 @@ Below is an instruction that describes a task. Write a response that appropriate
61
 
62
  <!-- prompt-template end -->
63
 
 
64
  <!-- README_GPTQ.md-provided-files start -->
65
  ## Provided files and GPTQ parameters
66
 
@@ -85,13 +98,13 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
85
 
86
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
87
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
88
- | [main](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
89
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
90
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
91
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
92
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
93
  | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
94
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
95
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
96
 
97
  <!-- README_GPTQ.md-provided-files end -->
@@ -99,10 +112,10 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
99
  <!-- README_GPTQ.md-download-from-branches start -->
100
  ## How to download from branches
101
 
102
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/13B-Legerdemain-L2-GPTQ:gptq-4bit-32g-actorder_True`
103
  - With Git, you can clone a branch with:
104
  ```
105
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ
106
  ```
107
  - In Python Transformers code, the branch is the `revision` parameter; see below.
108
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -115,7 +128,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
115
 
116
  1. Click the **Model tab**.
117
  2. Under **Download custom model or LoRA**, enter `TheBloke/13B-Legerdemain-L2-GPTQ`.
118
- - To download from a specific branch, enter for example `TheBloke/13B-Legerdemain-L2-GPTQ:gptq-4bit-32g-actorder_True`
119
  - see Provided Files above for the list of branches for each option.
120
  3. Click **Download**.
121
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -163,10 +176,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
163
 
164
  model_name_or_path = "TheBloke/13B-Legerdemain-L2-GPTQ"
165
  # To use a different branch, change revision
166
- # For example: revision="gptq-4bit-32g-actorder_True"
167
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
168
- torch_dtype=torch.float16,
169
  device_map="auto",
 
170
  revision="main")
171
 
172
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -184,7 +197,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
184
  print("\n\n*** Generate:")
185
 
186
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
187
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
188
  print(tokenizer.decode(output[0]))
189
 
190
  # Inference can also be done using transformers' pipeline
@@ -195,9 +208,11 @@ pipe = pipeline(
195
  model=model,
196
  tokenizer=tokenizer,
197
  max_new_tokens=512,
 
198
  temperature=0.7,
199
  top_p=0.95,
200
- repetition_penalty=1.15
 
201
  )
202
 
203
  print(pipe(prompt_template)[0]['generated_text'])
@@ -222,10 +237,12 @@ For further support, and discussions on these models and AI in general, join us
222
 
223
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
224
 
225
- ## Thanks, and how to contribute.
226
 
227
  Thanks to the [chirper.ai](https://chirper.ai) team!
228
 
 
 
229
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
230
 
231
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -237,7 +254,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
237
 
238
  **Special thanks to**: Aemon Algiz.
239
 
240
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
241
 
242
 
243
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/CalderaAI/13B-Legerdemain-L2
3
  inference: false
4
  license: llama2
5
  model_creator: CalderaAI
 
6
  model_name: 13B Legerdemain L2
7
  model_type: llama
8
+ prompt_template: 'Below is an instruction that describes a task. Write a response
9
+ that appropriately completes the request.
10
+
11
+
12
+ ### Instruction:
13
+
14
+ {prompt}
15
+
16
+
17
+ ### Response:
18
+
19
+ '
20
  quantized_by: TheBloke
21
  ---
22
 
 
52
  <!-- repositories-available start -->
53
  ## Repositories available
54
 
55
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/13B-Legerdemain-L2-AWQ)
56
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ)
57
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GGUF)
 
58
  * [CalderaAI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/CalderaAI/13B-Legerdemain-L2)
59
  <!-- repositories-available end -->
60
 
 
73
 
74
  <!-- prompt-template end -->
75
 
76
+
77
  <!-- README_GPTQ.md-provided-files start -->
78
  ## Provided files and GPTQ parameters
79
 
 
98
 
99
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
100
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
101
+ | [main](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
102
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
103
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
104
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
105
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
106
  | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
107
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
108
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
109
 
110
  <!-- README_GPTQ.md-provided-files end -->
 
112
  <!-- README_GPTQ.md-download-from-branches start -->
113
  ## How to download from branches
114
 
115
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/13B-Legerdemain-L2-GPTQ:main`
116
  - With Git, you can clone a branch with:
117
  ```
118
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/13B-Legerdemain-L2-GPTQ
119
  ```
120
  - In Python Transformers code, the branch is the `revision` parameter; see below.
121
  <!-- README_GPTQ.md-download-from-branches end -->
 
128
 
129
  1. Click the **Model tab**.
130
  2. Under **Download custom model or LoRA**, enter `TheBloke/13B-Legerdemain-L2-GPTQ`.
131
+ - To download from a specific branch, enter for example `TheBloke/13B-Legerdemain-L2-GPTQ:main`
132
  - see Provided Files above for the list of branches for each option.
133
  3. Click **Download**.
134
  4. The model will start downloading. Once it's finished it will say "Done".
 
176
 
177
  model_name_or_path = "TheBloke/13B-Legerdemain-L2-GPTQ"
178
  # To use a different branch, change revision
179
+ # For example: revision="main"
180
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
181
  device_map="auto",
182
+ trust_remote_code=False,
183
  revision="main")
184
 
185
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
197
  print("\n\n*** Generate:")
198
 
199
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
200
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
201
  print(tokenizer.decode(output[0]))
202
 
203
  # Inference can also be done using transformers' pipeline
 
208
  model=model,
209
  tokenizer=tokenizer,
210
  max_new_tokens=512,
211
+ do_sample=True,
212
  temperature=0.7,
213
  top_p=0.95,
214
+ top_k=40,
215
+ repetition_penalty=1.1
216
  )
217
 
218
  print(pipe(prompt_template)[0]['generated_text'])
 
237
 
238
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
239
 
240
+ ## Thanks, and how to contribute
241
 
242
  Thanks to the [chirper.ai](https://chirper.ai) team!
243
 
244
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
245
+
246
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
247
 
248
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
254
 
255
  **Special thanks to**: Aemon Algiz.
256
 
257
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
258
 
259
 
260
  Thank you to all my generous patrons and donaters!