Transformers
GGUF
English
llama
TheBloke commited on
Commit
79926dd
1 Parent(s): 75bd081

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -28
README.md CHANGED
@@ -45,7 +45,7 @@ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is
45
 
46
  The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
47
 
48
- As of August 25th, here is a list of clients and libraries that are known to support GGUF:
49
  * [llama.cpp](https://github.com/ggerganov/llama.cpp).
50
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
51
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
@@ -55,15 +55,13 @@ As of August 25th, here is a list of clients and libraries that are known to sup
55
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
56
  * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
57
 
58
- The clients and libraries below are expecting to add GGUF support shortly:
59
  <!-- README_GGUF.md-about-gguf end -->
60
-
61
  <!-- repositories-available start -->
62
  ## Repositories available
63
 
64
- * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GPTQ)
65
- * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GGUF)
66
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GGML)
67
  * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
68
  <!-- repositories-available end -->
69
 
@@ -85,9 +83,7 @@ The clients and libraries below are expecting to add GGUF support shortly:
85
 
86
  These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
87
 
88
- As of August 24th 2023 they are now compatible with KoboldCpp, release 1.41 and later.
89
-
90
- They are are not yet compatible with any other third-party UIS, libraries or utilities but this is expected to change very soon.
91
 
92
  ## Explanation of quantisation methods
93
  <details>
@@ -109,33 +105,36 @@ Refer to the Provided Files table below to see what files use which methods, and
109
 
110
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
111
  | ---- | ---- | ---- | ---- | ---- | ----- |
112
- | codellama-13b-oasst-sft-v10.Q2_K.gguf | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
113
- | codellama-13b-oasst-sft-v10.Q3_K_S.gguf | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
114
- | codellama-13b-oasst-sft-v10.Q3_K_M.gguf | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
115
- | codellama-13b-oasst-sft-v10.Q3_K_L.gguf | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
116
- | codellama-13b-oasst-sft-v10.Q4_0.gguf | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
117
- | codellama-13b-oasst-sft-v10.Q4_K_S.gguf | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
118
- | codellama-13b-oasst-sft-v10.Q4_K_M.gguf | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
119
- | codellama-13b-oasst-sft-v10.Q5_0.gguf | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
120
- | codellama-13b-oasst-sft-v10.Q5_K_S.gguf | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
121
- | codellama-13b-oasst-sft-v10.Q5_K_M.gguf | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
122
- | codellama-13b-oasst-sft-v10.Q6_K.gguf | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
123
- | codellama-13b-oasst-sft-v10.Q8_0.gguf | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
124
 
125
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
 
 
 
126
  <!-- README_GGUF.md-provided-files end -->
127
 
128
  <!-- README_GGUF.md-how-to-run start -->
129
- ## How to run in `llama.cpp`
130
 
131
  Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
132
 
133
- For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.
134
 
135
  ```
136
  ./main -t 10 -ngl 32 -m codellama-13b-oasst-sft-v10.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\nYou are a story writing assistant.<|im_end|>\n<|im_start|>user\nWrite a story about llamas<|im_end|>\n<|im_start|>assistant"
137
  ```
138
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
139
 
140
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
141
 
@@ -148,6 +147,44 @@ For other parameters and how to use them, please refer to [the llama.cpp documen
148
  ## How to run in `text-generation-webui`
149
 
150
  Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  <!-- README_GGUF.md-how-to-run end -->
152
 
153
  <!-- footer start -->
@@ -173,7 +210,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
173
 
174
  **Special thanks to**: Aemon Algiz.
175
 
176
- **Patreon special mentions**: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
177
 
178
 
179
  Thank you to all my generous patrons and donaters!
@@ -196,7 +233,7 @@ This model is an Open-Assistant fine-tuning of Meta's CodeLlama 13B LLM.
196
  - **Finetuned from:** [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) via [epfLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM)
197
  - **Model type:** Causal decoder-only transformer language model
198
  - **Language:** English
199
- - **Weights & Biases training logs:** 6123 steps, BS 64 [run56_oa_llamacode](https://wandb.ai/open-assistant/public-sft/runs/run56_oa_llamacode)
200
  - **Demo:** [Continuations for 250 random prompts (without system message)](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-08-26_OpenAssistant_codellama-13b-oasst-sft-v10_sampling_noprefix2.json)
201
  - **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
202
  - **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)
@@ -230,7 +267,7 @@ The model input can contain multiple conversation turns between user and assista
230
  (...)
231
  ```
232
 
233
- The model was partly trained with orca system messages.
234
  For inference we recommend to use the official [Llama2 system message](https://github.com/facebookresearch/llama/blob/ea9f33d6d3ea8ed7d560d270986407fd6c2e52b7/example_chat_completion.py#L57-L61):
235
  ```
236
  <|im_start|>system
@@ -252,7 +289,7 @@ If a question does not make any sense, or is not factually coherent, explain why
252
 
253
  ## Ethical Considerations and Limitations
254
 
255
- Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios.
256
  For these reasons, as with all LLMs, the potential outputs of codellama-13b-oasst-sft-v10 cannot be predicted
257
  in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses
258
  to user prompts. Therefore, before deploying any applications of codellama-13b-oasst-sft-v10, developers should
 
45
 
46
  The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
47
 
48
+ Here are a list of clients and libraries that are known to support GGUF:
49
  * [llama.cpp](https://github.com/ggerganov/llama.cpp).
50
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
51
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
 
55
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
56
  * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
57
 
 
58
  <!-- README_GGUF.md-about-gguf end -->
 
59
  <!-- repositories-available start -->
60
  ## Repositories available
61
 
62
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ)
63
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF)
64
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGML)
65
  * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
66
  <!-- repositories-available end -->
67
 
 
83
 
84
  These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
85
 
86
+ They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
 
 
87
 
88
  ## Explanation of quantisation methods
89
  <details>
 
105
 
106
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
107
  | ---- | ---- | ---- | ---- | ---- | ----- |
108
+ | [codellama-13b-oasst-sft-v10.Q2_K.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
109
+ | [codellama-13b-oasst-sft-v10.Q3_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
110
+ | [codellama-13b-oasst-sft-v10.Q3_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
111
+ | [codellama-13b-oasst-sft-v10.Q3_K_L.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
112
+ | [codellama-13b-oasst-sft-v10.Q4_0.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
113
+ | [codellama-13b-oasst-sft-v10.Q4_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
114
+ | [codellama-13b-oasst-sft-v10.Q4_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
115
+ | [codellama-13b-oasst-sft-v10.Q5_0.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
116
+ | [codellama-13b-oasst-sft-v10.Q5_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
117
+ | [codellama-13b-oasst-sft-v10.Q5_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
118
+ | [codellama-13b-oasst-sft-v10.Q6_K.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
119
+ | [codellama-13b-oasst-sft-v10.Q8_0.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
120
 
121
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
122
+
123
+
124
+
125
  <!-- README_GGUF.md-provided-files end -->
126
 
127
  <!-- README_GGUF.md-how-to-run start -->
128
+ ## Example `llama.cpp` command
129
 
130
  Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
131
 
132
+ For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
133
 
134
  ```
135
  ./main -t 10 -ngl 32 -m codellama-13b-oasst-sft-v10.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\nYou are a story writing assistant.<|im_end|>\n<|im_start|>user\nWrite a story about llamas<|im_end|>\n<|im_start|>assistant"
136
  ```
137
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
138
 
139
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
140
 
 
147
  ## How to run in `text-generation-webui`
148
 
149
  Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
150
+
151
+ ## How to run from Python code
152
+
153
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
154
+
155
+ ### How to load this model from Python using ctransformers
156
+
157
+ #### First install the package
158
+
159
+ ```bash
160
+ # Base ctransformers with no GPU acceleration
161
+ pip install ctransformers>=0.2.24
162
+ # Or with CUDA GPU acceleration
163
+ pip install ctransformers[cuda]>=0.2.24
164
+ # Or with ROCm GPU acceleration
165
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
166
+ # Or with Metal GPU acceleration for macOS systems
167
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
168
+ ```
169
+
170
+ #### Simple example code to load one of these GGUF models
171
+
172
+ ```python
173
+ from ctransformers import AutoModelForCausalLM
174
+
175
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
176
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF", model_file="codellama-13b-oasst-sft-v10.q4_K_M.gguf", model_type="llama", gpu_layers=50)
177
+
178
+ print(llm("AI is going to"))
179
+ ```
180
+
181
+ ## How to use with LangChain
182
+
183
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
184
+
185
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
186
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
187
+
188
  <!-- README_GGUF.md-how-to-run end -->
189
 
190
  <!-- footer start -->
 
210
 
211
  **Special thanks to**: Aemon Algiz.
212
 
213
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
214
 
215
 
216
  Thank you to all my generous patrons and donaters!
 
233
  - **Finetuned from:** [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) via [epfLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM)
234
  - **Model type:** Causal decoder-only transformer language model
235
  - **Language:** English
236
+ - **Weights & Biases training logs:** 6123 steps, BS 64 [run56_oa_llamacode](https://wandb.ai/open-assistant/public-sft/runs/run56_oa_llamacode)
237
  - **Demo:** [Continuations for 250 random prompts (without system message)](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-08-26_OpenAssistant_codellama-13b-oasst-sft-v10_sampling_noprefix2.json)
238
  - **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
239
  - **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)
 
267
  (...)
268
  ```
269
 
270
+ The model was partly trained with orca system messages.
271
  For inference we recommend to use the official [Llama2 system message](https://github.com/facebookresearch/llama/blob/ea9f33d6d3ea8ed7d560d270986407fd6c2e52b7/example_chat_completion.py#L57-L61):
272
  ```
273
  <|im_start|>system
 
289
 
290
  ## Ethical Considerations and Limitations
291
 
292
+ Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios.
293
  For these reasons, as with all LLMs, the potential outputs of codellama-13b-oasst-sft-v10 cannot be predicted
294
  in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses
295
  to user prompts. Therefore, before deploying any applications of codellama-13b-oasst-sft-v10, developers should