TheBloke commited on
Commit
bb0033f
1 Parent(s): 3be1326

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +527 -0
README.md ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: DiscoResearch/DiscoLM-120b
3
+ datasets:
4
+ - Open-Orca/SlimOrca-Dedup
5
+ - teknium/openhermes
6
+ - meta-math/MetaMathQA
7
+ - migtissera/Synthia-v1.3
8
+ - THUDM/AgentInstruct
9
+ - LeoLM/German_Songs
10
+ - LeoLM/German_Poems
11
+ - LeoLM/OpenSchnabeltier
12
+ - bjoernp/ultrachat_de
13
+ inference: false
14
+ language:
15
+ - en
16
+ library_name: transformers
17
+ license: llama2
18
+ model_creator: Disco Research
19
+ model_name: DiscoLM 120B
20
+ model_type: llama
21
+ pipeline_tag: text-generation
22
+ prompt_template: '<|im_start|>system
23
+
24
+ {system_message}<|im_end|>
25
+
26
+ <|im_start|>user
27
+
28
+ {prompt}<|im_end|>
29
+
30
+ <|im_start|>assistant
31
+
32
+ '
33
+ quantized_by: TheBloke
34
+ tags:
35
+ - goliath
36
+ - deutsch
37
+ - llama2
38
+ - discoresearch
39
+ ---
40
+ <!-- markdownlint-disable MD041 -->
41
+
42
+ <!-- header start -->
43
+ <!-- 200823 -->
44
+ <div style="width: auto; margin-left: auto; margin-right: auto">
45
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
46
+ </div>
47
+ <div style="display: flex; justify-content: space-between; width: 100%;">
48
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
49
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
50
+ </div>
51
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
52
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
53
+ </div>
54
+ </div>
55
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
56
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
57
+ <!-- header end -->
58
+
59
+ # DiscoLM 120B - GGUF
60
+ - Model creator: [Disco Research](https://huggingface.co/DiscoResearch)
61
+ - Original model: [DiscoLM 120B](https://huggingface.co/DiscoResearch/DiscoLM-120b)
62
+
63
+ <!-- description start -->
64
+ ## Description
65
+
66
+ This repo contains GGUF format model files for [Disco Research's DiscoLM 120B](https://huggingface.co/DiscoResearch/DiscoLM-120b).
67
+
68
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
69
+
70
+ <!-- description end -->
71
+ <!-- README_GGUF.md-about-gguf start -->
72
+ ### About GGUF
73
+
74
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
75
+
76
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
77
+
78
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
79
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
80
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
81
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
82
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
83
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
84
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
85
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
86
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
87
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
88
+
89
+ <!-- README_GGUF.md-about-gguf end -->
90
+ <!-- repositories-available start -->
91
+ ## Repositories available
92
+
93
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/DiscoLM-120b-AWQ)
94
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/DiscoLM-120b-GPTQ)
95
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/DiscoLM-120b-GGUF)
96
+ * [Disco Research's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/DiscoResearch/DiscoLM-120b)
97
+ <!-- repositories-available end -->
98
+
99
+ <!-- prompt-template start -->
100
+ ## Prompt template: ChatML
101
+
102
+ ```
103
+ <|im_start|>system
104
+ {system_message}<|im_end|>
105
+ <|im_start|>user
106
+ {prompt}<|im_end|>
107
+ <|im_start|>assistant
108
+
109
+ ```
110
+
111
+ <!-- prompt-template end -->
112
+
113
+
114
+ <!-- compatibility_gguf start -->
115
+ ## Compatibility
116
+
117
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
118
+
119
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
120
+
121
+ ## Explanation of quantisation methods
122
+
123
+ <details>
124
+ <summary>Click to see details</summary>
125
+
126
+ The new methods available are:
127
+
128
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
129
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
130
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
131
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
132
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
133
+
134
+ Refer to the Provided Files table below to see what files use which methods, and how.
135
+ </details>
136
+ <!-- compatibility_gguf end -->
137
+
138
+ <!-- README_GGUF.md-provided-files start -->
139
+ ## Provided files
140
+
141
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
142
+ | ---- | ---- | ---- | ---- | ---- | ----- |
143
+ | [discolm-120b.Q2_K.gguf](https://huggingface.co/TheBloke/DiscoLM-120b-GGUF/blob/main/discolm-120b.Q2_K.gguf) | Q2_K | 2 | 49.63 GB| 52.13 GB | smallest, significant quality loss - not recommended for most purposes |
144
+ | discolm-120b.Q3_K_S.gguf | Q3_K_S | 3 | 50.71 GB| 53.21 GB | very small, high quality loss |
145
+ | discolm-120b.Q3_K_M.gguf | Q3_K_M | 3 | 56.42 GB| 58.92 GB | very small, high quality loss |
146
+ | discolm-120b.Q3_K_L.gguf | Q3_K_L | 3 | 61.67 GB| 64.17 GB | small, substantial quality loss |
147
+ | discolm-120b.Q4_0.gguf | Q4_0 | 4 | 66.31 GB| 68.81 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
148
+ | discolm-120b.Q4_K_S.gguf | Q4_K_S | 4 | 66.43 GB| 68.93 GB | small, greater quality loss |
149
+ | discolm-120b.Q4_K_M.gguf | Q4_K_M | 4 | 70.64 GB| 73.14 GB | medium, balanced quality - recommended |
150
+ | discolm-120b.Q5_0.gguf | Q5_0 | 5 | 81.00 GB| 83.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
151
+ | discolm-120b.Q5_K_S.gguf | Q5_K_S | 5 | 81.00 GB| 83.50 GB | large, low quality loss - recommended |
152
+ | discolm-120b.Q5_K_M.gguf | Q5_K_M | 5 | 83.23 GB| 85.73 GB | large, very low quality loss - recommended |
153
+ | discolm-120b.Q6_K.gguf | Q6_K | 6 | 96.60 GB| 99.10 GB | very large, extremely low quality loss |
154
+ | discolm-120b.Q8_0.gguf | Q8_0 | 8 | 125.12 GB| 127.62 GB | very large, extremely low quality loss - not recommended |
155
+
156
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
157
+
158
+ ### Q6_K and Q8_0 files are split and require joining
159
+
160
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
161
+
162
+ <details>
163
+ <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
164
+
165
+ ### q6_K
166
+ Please download:
167
+ * `discolm-120b.Q6_K.gguf-split-a`
168
+ * `discolm-120b.Q6_K.gguf-split-b`
169
+
170
+ ### q8_0
171
+ Please download:
172
+ * `discolm-120b.Q8_0.gguf-split-a`
173
+ * `discolm-120b.Q8_0.gguf-split-b`
174
+
175
+ To join the files, do the following:
176
+
177
+ Linux and macOS:
178
+ ```
179
+ cat discolm-120b.Q6_K.gguf-split-* > discolm-120b.Q6_K.gguf && rm discolm-120b.Q6_K.gguf-split-*
180
+ cat discolm-120b.Q8_0.gguf-split-* > discolm-120b.Q8_0.gguf && rm discolm-120b.Q8_0.gguf-split-*
181
+ ```
182
+ Windows command line:
183
+ ```
184
+ COPY /B discolm-120b.Q6_K.gguf-split-a + discolm-120b.Q6_K.gguf-split-b discolm-120b.Q6_K.gguf
185
+ del discolm-120b.Q6_K.gguf-split-a discolm-120b.Q6_K.gguf-split-b
186
+
187
+ COPY /B discolm-120b.Q8_0.gguf-split-a + discolm-120b.Q8_0.gguf-split-b discolm-120b.Q8_0.gguf
188
+ del discolm-120b.Q8_0.gguf-split-a discolm-120b.Q8_0.gguf-split-b
189
+ ```
190
+
191
+ </details>
192
+ <!-- README_GGUF.md-provided-files end -->
193
+
194
+ <!-- README_GGUF.md-how-to-download start -->
195
+ ## How to download GGUF files
196
+
197
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
198
+
199
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
200
+
201
+ * LM Studio
202
+ * LoLLMS Web UI
203
+ * Faraday.dev
204
+
205
+ ### In `text-generation-webui`
206
+
207
+ Under Download Model, you can enter the model repo: TheBloke/DiscoLM-120b-GGUF and below it, a specific filename to download, such as: discolm-120b.Q4_K_M.gguf.
208
+
209
+ Then click Download.
210
+
211
+ ### On the command line, including multiple files at once
212
+
213
+ I recommend using the `huggingface-hub` Python library:
214
+
215
+ ```shell
216
+ pip3 install huggingface-hub
217
+ ```
218
+
219
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
220
+
221
+ ```shell
222
+ huggingface-cli download TheBloke/DiscoLM-120b-GGUF discolm-120b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
223
+ ```
224
+
225
+ <details>
226
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
227
+
228
+ You can also download multiple files at once with a pattern:
229
+
230
+ ```shell
231
+ huggingface-cli download TheBloke/DiscoLM-120b-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
232
+ ```
233
+
234
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
235
+
236
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
237
+
238
+ ```shell
239
+ pip3 install hf_transfer
240
+ ```
241
+
242
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
243
+
244
+ ```shell
245
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/DiscoLM-120b-GGUF discolm-120b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
246
+ ```
247
+
248
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
249
+ </details>
250
+ <!-- README_GGUF.md-how-to-download end -->
251
+
252
+ <!-- README_GGUF.md-how-to-run start -->
253
+ ## Example `llama.cpp` command
254
+
255
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
256
+
257
+ ```shell
258
+ ./main -ngl 35 -m discolm-120b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
259
+ ```
260
+
261
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
262
+
263
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
264
+
265
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
266
+
267
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
268
+
269
+ ## How to run in `text-generation-webui`
270
+
271
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
272
+
273
+ ## How to run from Python code
274
+
275
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
276
+
277
+ ### How to load this model in Python code, using llama-cpp-python
278
+
279
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
280
+
281
+ #### First install the package
282
+
283
+ Run one of the following commands, according to your system:
284
+
285
+ ```shell
286
+ # Base ctransformers with no GPU acceleration
287
+ pip install llama-cpp-python
288
+ # With NVidia CUDA acceleration
289
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
290
+ # Or with OpenBLAS acceleration
291
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
292
+ # Or with CLBLast acceleration
293
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
294
+ # Or with AMD ROCm GPU acceleration (Linux only)
295
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
296
+ # Or with Metal GPU acceleration for macOS systems only
297
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
298
+
299
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
300
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
301
+ pip install llama-cpp-python
302
+ ```
303
+
304
+ #### Simple llama-cpp-python example code
305
+
306
+ ```python
307
+ from llama_cpp import Llama
308
+
309
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
310
+ llm = Llama(
311
+ model_path="./discolm-120b.Q4_K_M.gguf", # Download the model file first
312
+ n_ctx=4096, # The max sequence length to use - note that longer sequence lengths require much more resources
313
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
314
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
315
+ )
316
+
317
+ # Simple inference example
318
+ output = llm(
319
+ "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant", # Prompt
320
+ max_tokens=512, # Generate up to 512 tokens
321
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
322
+ echo=True # Whether to echo the prompt
323
+ )
324
+
325
+ # Chat Completion API
326
+
327
+ llm = Llama(model_path="./discolm-120b.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
328
+ llm.create_chat_completion(
329
+ messages = [
330
+ {"role": "system", "content": "You are a story writing assistant."},
331
+ {
332
+ "role": "user",
333
+ "content": "Write a story about llamas."
334
+ }
335
+ ]
336
+ )
337
+ ```
338
+
339
+ ## How to use with LangChain
340
+
341
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
342
+
343
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
344
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
345
+
346
+ <!-- README_GGUF.md-how-to-run end -->
347
+
348
+ <!-- footer start -->
349
+ <!-- 200823 -->
350
+ ## Discord
351
+
352
+ For further support, and discussions on these models and AI in general, join us at:
353
+
354
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
355
+
356
+ ## Thanks, and how to contribute
357
+
358
+ Thanks to the [chirper.ai](https://chirper.ai) team!
359
+
360
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
361
+
362
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
363
+
364
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
365
+
366
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
367
+
368
+ * Patreon: https://patreon.com/TheBlokeAI
369
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
370
+
371
+ **Special thanks to**: Aemon Algiz.
372
+
373
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
374
+
375
+
376
+ Thank you to all my generous patrons and donaters!
377
+
378
+ And thank you again to a16z for their generous grant.
379
+
380
+ <!-- footer end -->
381
+
382
+ <!-- original-model-card start -->
383
+ # Original model card: Disco Research's DiscoLM 120B
384
+
385
+
386
+
387
+ ![EM Logo](https://raw.githubusercontent.com/jphme/jpdus.github.io/master/images/discoresearch.webp)
388
+
389
+ # DiscoLM 120b (Alpha)
390
+
391
+ **DiscoLM 120b (Alpha)** is an experimental 120b model based on [Alpindale´s Goliath 120b](https://huggingface.co/alpindale/goliath-120b), a merge of different Llama2-70b models, and further finetuned on a dataset of some the most popular open-source instruction sets.
392
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp).
393
+
394
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - we are very grateful for their support; please check out their wesbite and projects!
395
+
396
+ <img src="https://hessian.ai/wp-content/themes/hessianai/img/hessian-ai-logo.svg" width="120">
397
+
398
+ ## Table of Contents
399
+
400
+ 1. [Download](#download)
401
+ 2. [Benchmarks](#benchmarks)
402
+ 3. [Prompt Format](#prompt-format)
403
+ 4. [Dataset](#dataset)
404
+ 5. [Acknowledgements](#acknowledgements)
405
+ 6. [Contact](#contact)
406
+ 7. [About DiscoResearch](#about-discoresearch)
407
+ 8. [Disclaimer](#disclaimer)
408
+
409
+ ## Download
410
+
411
+ | Huggingface | GPTQ | GGUF | AWQ | *Base Model* |
412
+ |-------|-------|-------|-------|-------|
413
+ | [Link](https://huggingface.co/DiscoResearch/DiscoLM-120b) | soon | soon | soon | [Goliath 120b](https://huggingface.co/alpindale/goliath-120b) |
414
+
415
+ ## Benchmarks
416
+
417
+ ### Hugginface Leaderboard
418
+
419
+ This models is still an early Alpha and we can't guarantee that there isn't any contamination.
420
+ However, the average of **72.15** would earn the #2 spot on the HF leaderboard at the time of writing and the highest score for a >70b model yet.
421
+
422
+ | Metric | Value |
423
+ |-----------------------|-------|
424
+ | ARC (25-shot) | 69.54 |
425
+ | HellaSwag (10-shot) | 86.49 |
426
+ | MMLU (5-shot) | 70.32 |
427
+ | TruthfulQA (0-shot) | 61.42 |
428
+ | Winogrande (5-shot) | 83.03 |
429
+ | GSM8k (5-shot) | 68.39 |
430
+ | **Avg.** | **72.15** |
431
+
432
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
433
+
434
+ ### FastEval
435
+
436
+ | Metric | Value |
437
+ |-----------------------|-------|
438
+ | GSM8K | 81.2 |
439
+ | Math | 22.3 |
440
+ | BBH | 72.9 |
441
+ | MMLU | 67.9 |
442
+ | **Avg.** | **53.3** |
443
+
444
+ ### MTBench
445
+
446
+ ```json
447
+ {
448
+ "first_turn": 8.45,
449
+ "second_turn": 7.45,
450
+ "categories": {
451
+ "writing": 9.4,
452
+ "roleplay": 8.65,
453
+ "reasoning": 6.85,
454
+ "math": 5.55,
455
+ "coding": 4.95,
456
+ "extraction": 9.15,
457
+ "stem": 9.225,
458
+ "humanities": 9.825
459
+ },
460
+ "average": 7.95
461
+ }
462
+ ```
463
+
464
+ ## Prompt Format
465
+
466
+ This model follows the ChatML format:
467
+
468
+ ```
469
+ <|im_start|>system
470
+ You are DiscoLM, a helpful assistant.
471
+ <|im_end|>
472
+ <|im_start|>user
473
+ Please tell me possible reasons to call a research collective "Disco Research"<|im_end|>
474
+ <|im_start|>assistant
475
+ ```
476
+
477
+ This formatting is also available via a pre-defined Transformers chat template, which means that lists of messages can be formatted for you with the apply_chat_template() method:
478
+
479
+ ```python
480
+ chat = [
481
+ {"role": "system", "content": "You are DiscoLM, a helpful assistant."},
482
+ {"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
483
+ ]
484
+ tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
485
+ ```
486
+
487
+ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized and formatted conversation ready to pass to `model.generate()`.
488
+
489
+ ## Dataset
490
+
491
+ The dataset curation for DiscoLM 120b followed a "brute force"/"PoC" approach, as one goal was to see whether a 120b model can "absorb" more instruction data than a 70b model.
492
+
493
+ The following datasets were used for training DiscoLM 120b:
494
+
495
+ * [SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
496
+ * [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
497
+ * [OpenHermes](https://huggingface.co/datasets/teknium/openhermes)
498
+ * [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
499
+ * [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
500
+ * [Synthia v.1.3](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
501
+ * [AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct)
502
+
503
+ Many thanks for all dataset providers/curators!
504
+
505
+ ## Contact
506
+
507
+ Best way to reach us is on our [Discord](https://discord.gg/4pAqJP7W).
508
+
509
+ ## About DiscoResearch
510
+
511
+ DiscoResearch is an aspiring open research community. Disco should be a place where researchers from many communities can come together to combine their expertise and create innovative and groundbreaking LLMs. Come join our Discord, share your opinions and ideas, and advance open LLM research with us!
512
+
513
+ ## Acknowledgements
514
+
515
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp). [Jan Harries](https://huggingface.co/jphme) helped with technical adivce, logistics and the Model Card and [AutoMeta](https://huggingface.co/Alignment-Lab-AI) also provided helpful technical adivce.
516
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - many thanks in particular to [Patrick Schramowski](https://huggingface.co/PSaiml) for his support.
517
+
518
+ We are standing on the shoulders of giants; many thanks in no particular order to [alpindale](https://huggingface.co/alpindale) for Goliath 120b (with important contributions by [Charles Goddard](https://huggingface.co/chargoddard) and [Undi95](https://huggingface.co/Undi95)), [TheBloke](https://huggingface.co/TheBloke) for providing quantized versions, [winglian](https://huggingface.co/winglian) for Axolotl which was used to train the model and the SlimOrca dataset, [garage-bAInd](https://huggingface.co/garage-bAInd), [Teknium](https://huggingface.co/teknium), [Migel Tissera](https://huggingface.co/migtissera), [MetaMath](https://huggingface.co/meta-math) for their great datasets (please contact us if we forgot to mention you here!).
519
+
520
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
521
+
522
+ ## Disclaimer
523
+
524
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
525
+ This model should only be used for research purposes. The original Llama2 license and all restrictions of datasets used to train this model apply.
526
+
527
+ <!-- original-model-card end -->