File size: 12,826 Bytes
60a0b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c6a3ac
60a0b33
 
 
 
7c6a3ac
60a0b33
 
 
 
7c6a3ac
60a0b33
7c6a3ac
60a0b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d1999a
60a0b33
 
 
 
 
7d1999a
60a0b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
---
datasets:
- tiiuae/falcon-refinedweb
language:
- en
inference: false
---

# Falcon-7B-Instruct GPTQ

This repo contains an experimantal GPTQ 4bit model for [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct).

It is the result of quantising to 4bit using [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ).

## EXPERIMENTAL

Please note this is an experimental first model. Support for it is currently quite limited.

To use it you will require:

1. AutoGPTQ, from the latest `main` branch and compiled with `pip install .`
2. `pip install einops`

You can then use it immediately from Python code - see example code below

## text-generation-webui

There is also provisional AutoGPTQ support in text-generation-webui.

However at the time I'm writing this, a commit is needed to text-generation-webui to enable it to load this model.

I have [opened a PR here](https://github.com/oobabooga/text-generation-webui/pull/2374); once this is merged, text-generation-webui will support this GPTQ model.

To get it working before the PR is merged, you will need to:
1. Edit `text-generation-webui/modules/AutoGPTQ_loader.py`
2. Make the following change:

Find the line that says:
```
'use_safetensors': use_safetensors,
```

And after it, add:
```
'trust_remote_code': shared.args.trust_remote_code,
```

[Once you are done the file should look like this](https://github.com/oobabooga/text-generation-webui/blob/473a57e35219c063d2fc230cfc7b5a118b448b38/modules/AutoGPTQ_loader.py#L33-L39)

3. Then save and close the file, and launch text-generation-webui as described below

## How to download and use this model in text-generation-webui

1. Launch text-generation-webui with the following command-line arguments: `--autogptq --trust_remote_code`
2. Click the **Model tab**.
3. Under **Download custom model or LoRA**, enter `TheBloke/falcon-7B-instruct-GPTQ`.
4. Click **Download**.
5. Wait until it says it's finished downloading.
6. Click the **Refresh** icon next to **Model** in the top left.
7. In the **Model drop-down**: choose the model you just downloaded, `falcon-7B-instruct-GPTQ`.
8. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!

## About `trust_remote_code`

Please be aware that this command line argument causes Python code provided by Falcon to be executed on your machine.

This code is required at the moment because Falcon is too new to be supported by Hugging Face transformers. At some point in the future transformers will support the model natively, and then `trust_remote_code` will no longer be needed.

In this repo you can see two `.py` files - these are the files that get executed. They are copied from the base repo at [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct).

## Simple Python example code

To run this code you need to install AutoGPTQ from source:
```
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip install . # This step requires CUDA toolkit installed
```
And install einops:
```
pip install einops
```

You can then run this example code:
```python
import torch
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM

# Download the model from HF and store it locally, then reference its location here:
quantized_model_dir = "/path/to/falcon7b-instruct-gptq"

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=False)

model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False, use_safetensors=True, torch_dtype=torch.float32, trust_remote_code=True)

prompt = "Write a story about llamas"
prompt_template = f"### Instruction: {prompt}\n### Response:"

tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
print(tokenizer.decode(output[0]))
```

## Provided files

**gptq_model-4bit-64g.safetensors**

This will work with AutoGPTQ as of commit `3cb1bf5` (`3cb1bf5a6d43a06dc34c6442287965d1838303d3`)

It was created with groupsize 64 to give higher inference quality, and without `desc_act` (act-order) to increase inference speed.

* `gptq_model-4bit-64g.safetensors`
  * Works only with latest AutoGPTQ CUDA, compiled from source as of commit `3cb1bf5`
    * At this time it does not work with AutoGPTQ Triton, but support will hopefully be added in time. 
  * Works with text-generation-webui using `--autogptq --trust_remote_code`
    * At this time it does NOT work with one-click-installers
  * Does not work with any version of GPTQ-for-LLaMa
  * Parameters: Groupsize = 64. No act-order.

# ✨ Original model card: Falcon-7B-Instruct

**Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets. It is made available under the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b-instruct/blob/main/LICENSE.txt).**

*Paper coming soon 😊.*

## Why use Falcon-7B-Instruct?

* **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
* **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).

πŸ’¬ **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).

πŸ”₯ **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

πŸ’₯ **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**


# Model Card for Falcon-7B-Instruct

## Model Details

### Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
- **Model type:** Causal decoder-only;
- **Language(s) (NLP):** English and French;
- **License:** [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b-instruct/blob/main/LICENSE.txt);
- **Finetuned from model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).

### Model Source

- **Paper:** *coming soon*.

## Uses

### Direct Use

Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.

### Out-of-Scope Use

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.

## Bias, Risks, and Limitations

Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

### Recommendations

We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.

## How to Get Started with the Model


```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

## Training Details

### Training Data

Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.

| **Data source**    | **Fraction** | **Tokens** | **Description**                       |
|--------------------|--------------|------------|-----------------------------------|
| [Bai ze](https://github.com/project-baize/baize-chatbot) | 65%          | 164M     | chat                 |
| [GPT4All](https://github.com/nomic-ai/gpt4all)              | 25%           | 62M       | instruct                                  |
| [GPTeacher](https://github.com/teknium1/GPTeacher)      | 5%           | 11M        | instruct |
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 5%          | 13M     | massive web crawl                 |


The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.


## Evaluation

*Paper coming soon.*

See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.

Note that this model variant is not optimized for NLP benchmarks.


## Technical Specifications

For more information about pretraining, see [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).

### Model Architecture and Objective

Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:

* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
* **Decoder-block:** parallel attention/MLP with a single layer norm.

| **Hyperparameter** | **Value** | **Comment**                            |
|--------------------|-----------|----------------------------------------|
| Layers             | 32        |                                        |
| `d_model`          | 4544      | Increased to compensate for multiquery                                       |
| `head_dim`         | 64        | Reduced to optimise for FlashAttention |
| Vocabulary         | 65024     |                                        |
| Sequence length    | 2048      |                                        |

### Compute Infrastructure

#### Hardware

Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances.

#### Software

Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)


## Citation

*Paper coming soon 😊.*

## License

Falcon-7B-Instruct is made available under the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b-instruct/blob/main/LICENSE.txt). Broadly speaking,
* You can freely use our models for research and/or personal purpose;
* You are allowed to share and build derivatives of these models, but you are required to give attribution and to share-alike with the same license;
* For commercial use, you are exempt from royalties payment if the attributable revenues are inferior to $1M/year, otherwise you should enter in a commercial agreement with TII.


## Contact
falconllm@tii.ae