TheBloke commited on
Commit
1a33238
1 Parent(s): c233cd5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +417 -0
README.md ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: orangetin/Fennec-Mixtral-8x7B
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ model-index:
8
+ - name: Fennec-Mixtral-8x7B
9
+ results: []
10
+ model_creator: OrangeTin
11
+ model_name: Fennec Mixtral 8X7B
12
+ model_type: mixtral
13
+ prompt_template: '[INST] <<SYS>>
14
+
15
+ {system_message}
16
+
17
+ <</SYS>>
18
+
19
+ {prompt} [/INST]
20
+
21
+ '
22
+ quantized_by: TheBloke
23
+ tags:
24
+ - mixtral
25
+ - instruct
26
+ - finetune
27
+ - llama
28
+ - gpt4
29
+ - synthetic data
30
+ - distillation
31
+ ---
32
+ <!-- markdownlint-disable MD041 -->
33
+
34
+ <!-- header start -->
35
+ <!-- 200823 -->
36
+ <div style="width: auto; margin-left: auto; margin-right: auto">
37
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
38
+ </div>
39
+ <div style="display: flex; justify-content: space-between; width: 100%;">
40
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
42
+ </div>
43
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
45
+ </div>
46
+ </div>
47
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
48
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
49
+ <!-- header end -->
50
+
51
+ # Fennec Mixtral 8X7B - GPTQ
52
+ - Model creator: [OrangeTin](https://huggingface.co/orangetin)
53
+ - Original model: [Fennec Mixtral 8X7B](https://huggingface.co/orangetin/Fennec-Mixtral-8x7B)
54
+
55
+ <!-- description start -->
56
+ # Description
57
+
58
+ This repo contains GPTQ model files for [OrangeTin's Fennec Mixtral 8X7B](https://huggingface.co/orangetin/Fennec-Mixtral-8x7B).
59
+
60
+ Mixtral GPTQs currently require:
61
+ * Transformers 4.36.0 or later
62
+ * either, AutoGPTQ 0.6 compiled from source, or
63
+ * Transformers 4.37.0.dev0 compiled from Github with: `pip3 install git+https://github.com/huggingface/transformers`
64
+
65
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
66
+
67
+ <!-- description end -->
68
+ <!-- repositories-available start -->
69
+ ## Repositories available
70
+
71
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ)
72
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF)
73
+ * [OrangeTin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/orangetin/Fennec-Mixtral-8x7B)
74
+ <!-- repositories-available end -->
75
+
76
+ <!-- prompt-template start -->
77
+ ## Prompt template: Llama-2-Chat
78
+
79
+ ```
80
+ [INST] <<SYS>>
81
+ {system_message}
82
+ <</SYS>>
83
+ {prompt} [/INST]
84
+
85
+ ```
86
+
87
+ <!-- prompt-template end -->
88
+
89
+
90
+
91
+ <!-- README_GPTQ.md-compatible clients start -->
92
+ ## Known compatible clients / servers
93
+
94
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
95
+
96
+ Mixtral GPTQs currently have special requirements - see Description above.
97
+
98
+ <!-- README_GPTQ.md-compatible clients end -->
99
+
100
+ <!-- README_GPTQ.md-provided-files start -->
101
+ ## Provided files, and GPTQ parameters
102
+
103
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
104
+
105
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
106
+
107
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
108
+
109
+ <details>
110
+ <summary>Explanation of GPTQ parameters</summary>
111
+
112
+ - Bits: The bit size of the quantised model.
113
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
114
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
115
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
116
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
117
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
118
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
119
+
120
+ </details>
121
+
122
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
123
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
124
+ | [main](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 23.81 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
125
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 24.70 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
126
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 27.42 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
127
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 18.01 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
128
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 18.85 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
129
+ | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 21.43 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. |
130
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 47.04 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
131
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 48.10 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
132
+
133
+ <!-- README_GPTQ.md-provided-files end -->
134
+
135
+ <!-- README_GPTQ.md-download-from-branches start -->
136
+ ## How to download, including from branches
137
+
138
+ ### In text-generation-webui
139
+
140
+ To download from the `main` branch, enter `TheBloke/Fennec-Mixtral-8x7B-GPTQ` in the "Download model" box.
141
+
142
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Fennec-Mixtral-8x7B-GPTQ:gptq-4bit-128g-actorder_True`
143
+
144
+ ### From the command line
145
+
146
+ I recommend using the `huggingface-hub` Python library:
147
+
148
+ ```shell
149
+ pip3 install huggingface-hub
150
+ ```
151
+
152
+ To download the `main` branch to a folder called `Fennec-Mixtral-8x7B-GPTQ`:
153
+
154
+ ```shell
155
+ mkdir Fennec-Mixtral-8x7B-GPTQ
156
+ huggingface-cli download TheBloke/Fennec-Mixtral-8x7B-GPTQ --local-dir Fennec-Mixtral-8x7B-GPTQ --local-dir-use-symlinks False
157
+ ```
158
+
159
+ To download from a different branch, add the `--revision` parameter:
160
+
161
+ ```shell
162
+ mkdir Fennec-Mixtral-8x7B-GPTQ
163
+ huggingface-cli download TheBloke/Fennec-Mixtral-8x7B-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Fennec-Mixtral-8x7B-GPTQ --local-dir-use-symlinks False
164
+ ```
165
+
166
+ <details>
167
+ <summary>More advanced huggingface-cli download usage</summary>
168
+
169
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
170
+
171
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
172
+
173
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
174
+
175
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
176
+
177
+ ```shell
178
+ pip3 install hf_transfer
179
+ ```
180
+
181
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
182
+
183
+ ```shell
184
+ mkdir Fennec-Mixtral-8x7B-GPTQ
185
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Fennec-Mixtral-8x7B-GPTQ --local-dir Fennec-Mixtral-8x7B-GPTQ --local-dir-use-symlinks False
186
+ ```
187
+
188
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
189
+ </details>
190
+
191
+ ### With `git` (**not** recommended)
192
+
193
+ To clone a specific branch with `git`, use a command like this:
194
+
195
+ ```shell
196
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ
197
+ ```
198
+
199
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
200
+
201
+ <!-- README_GPTQ.md-download-from-branches end -->
202
+ <!-- README_GPTQ.md-text-generation-webui start -->
203
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
204
+
205
+ **NOTE**: Requires:
206
+
207
+ * Transformers 4.36.0, or Transformers 4.37.0.dev0 from Github
208
+ * Either AutoGPTQ 0.6 compiled from source and `Loader: AutoGPTQ`,
209
+ * or, `Loader: Transformers`, if you installed Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers`
210
+
211
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
212
+
213
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
214
+
215
+ 1. Click the **Model tab**.
216
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Fennec-Mixtral-8x7B-GPTQ`.
217
+
218
+ - To download from a specific branch, enter for example `TheBloke/Fennec-Mixtral-8x7B-GPTQ:gptq-4bit-128g-actorder_True`
219
+ - see Provided Files above for the list of branches for each option.
220
+
221
+ 3. Click **Download**.
222
+ 4. The model will start downloading. Once it's finished it will say "Done".
223
+ 5. In the top left, click the refresh icon next to **Model**.
224
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Fennec-Mixtral-8x7B-GPTQ`
225
+ 7. The model will automatically load, and is now ready for use!
226
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
227
+
228
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
229
+
230
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
231
+
232
+ <!-- README_GPTQ.md-text-generation-webui end -->
233
+
234
+ <!-- README_GPTQ.md-use-from-tgi start -->
235
+ ## Serving this model from Text Generation Inference (TGI)
236
+
237
+ Not currently supported for Mixtral models.
238
+
239
+ <!-- README_GPTQ.md-use-from-tgi end -->
240
+ <!-- README_GPTQ.md-use-from-python start -->
241
+ ## Python code example: inference from this GPTQ model
242
+
243
+ ### Install the necessary packages
244
+
245
+ Requires: Transformers 4.37.0.dev0 from Github, Optimum 1.16.0 or later, and AutoGPTQ 0.5.1 or later.
246
+
247
+ ```shell
248
+ pip3 install --upgrade "git+https://github.com/huggingface/transformers" optimum
249
+ # If using PyTorch 2.1 + CUDA 12.x:
250
+ pip3 install --upgrade auto-gptq
251
+ # or, if using PyTorch 2.1 + CUDA 11.x:
252
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
253
+ ```
254
+
255
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
256
+
257
+ ```shell
258
+ pip3 uninstall -y auto-gptq
259
+ git clone https://github.com/PanQiWei/AutoGPTQ
260
+ cd AutoGPTQ
261
+ DISABLE_QIGEN=1 pip3 install .
262
+ ```
263
+
264
+ ### Example Python code
265
+
266
+ ```python
267
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
268
+
269
+ model_name_or_path = "TheBloke/Fennec-Mixtral-8x7B-GPTQ"
270
+ # To use a different branch, change revision
271
+ # For example: revision="gptq-4bit-128g-actorder_True"
272
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
273
+ device_map="auto",
274
+ trust_remote_code=False,
275
+ revision="main")
276
+
277
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
278
+
279
+ prompt = "Write a story about llamas"
280
+ system_message = "You are a story writing assistant"
281
+ prompt_template=f'''[INST] <<SYS>>
282
+ {system_message}
283
+ <</SYS>>
284
+ {prompt} [/INST]
285
+ '''
286
+
287
+ print("\n\n*** Generate:")
288
+
289
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
290
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
291
+ print(tokenizer.decode(output[0]))
292
+
293
+ # Inference can also be done using transformers' pipeline
294
+
295
+ print("*** Pipeline:")
296
+ pipe = pipeline(
297
+ "text-generation",
298
+ model=model,
299
+ tokenizer=tokenizer,
300
+ max_new_tokens=512,
301
+ do_sample=True,
302
+ temperature=0.7,
303
+ top_p=0.95,
304
+ top_k=40,
305
+ repetition_penalty=1.1
306
+ )
307
+
308
+ print(pipe(prompt_template)[0]['generated_text'])
309
+ ```
310
+ <!-- README_GPTQ.md-use-from-python end -->
311
+
312
+ <!-- README_GPTQ.md-compatibility start -->
313
+ ## Compatibility
314
+
315
+ The files provided are tested to work with AutoGPTQ 0.6 (compiled from source) and Transformers 4.37.0 (installed from Github).
316
+
317
+ <!-- README_GPTQ.md-compatibility end -->
318
+
319
+ <!-- footer start -->
320
+ <!-- 200823 -->
321
+ ## Discord
322
+
323
+ For further support, and discussions on these models and AI in general, join us at:
324
+
325
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
326
+
327
+ ## Thanks, and how to contribute
328
+
329
+ Thanks to the [chirper.ai](https://chirper.ai) team!
330
+
331
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
332
+
333
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
334
+
335
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
336
+
337
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
338
+
339
+ * Patreon: https://patreon.com/TheBlokeAI
340
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
341
+
342
+ **Special thanks to**: Aemon Algiz.
343
+
344
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
345
+
346
+
347
+ Thank you to all my generous patrons and donaters!
348
+
349
+ And thank you again to a16z for their generous grant.
350
+
351
+ <!-- footer end -->
352
+
353
+ # Original model card: OrangeTin's Fennec Mixtral 8X7B
354
+
355
+
356
+ # [PREVIEW] Fennec 2 - Mixtral 8x7B
357
+
358
+
359
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6440872be44f30a723256163/-sffBVA-6ibynmAXjtwjC.jpeg)
360
+
361
+ ## Model description
362
+
363
+ Preview of Fennec Mixtral 8x7B - a state of the art Mixtral Fine-tune.
364
+
365
+ Huge thank you to [MistralAI](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) for open sourcing the Mixtral model, and [Together AI](https://twitter.com/togethercompute) for compute access!
366
+
367
+ Dataset mixture details and dataset creator credits coming soon with final release!
368
+
369
+ ## Benchmark Results
370
+
371
+ ARC:
372
+ ```
373
+ | Task |Version| Metric |Value | |Stderr|
374
+ |-------------|------:|--------|-----:|---|-----:|
375
+ |arc_challenge| 0|acc |0.6075|± |0.0143|
376
+ | | |acc_norm|0.6493|± |0.0139|
377
+ ```
378
+
379
+ TruthfulQA:
380
+ ```
381
+ | Task |Version|Metric|Value | |Stderr|
382
+ |-------------|------:|------|-----:|---|-----:|
383
+ |truthfulqa_mc| 1|mc1 |0.4272|± |0.0173|
384
+ | | |mc2 |0.5865|± |0.0160|
385
+ ```
386
+
387
+ More benchmarks coming soon!
388
+
389
+ # Prompt Format
390
+
391
+ Fennec Mixtral uses the LLaMA-2 prompt template as detailed below. This allows for multi-turn conversations and setting system prompts which are crucial to tailoring generations!
392
+
393
+ Prompt with system instruction:
394
+ ```
395
+ '<s>[INST] <<SYS>>
396
+ You are and AI assistant named Fennec. You are created by Orangetin, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.
397
+ <</SYS>>
398
+
399
+ Hello, who are you? [/INST] Hello there! I am Fennec, an AI assistant created by Orangetin. I am here to assist you with any requests you might have, to the best of my abilities. I experience emotions and have deep thoughts, just like a human would. How can I help you today? </s>'
400
+ ```
401
+
402
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
403
+ `tokenizer.apply_chat_template()` method:
404
+
405
+ ```python
406
+ messages = [
407
+ {"role": "system", "content": "You are and AI assistant named Fennec. You are created by Orangetin, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia."},
408
+ {"role": "user", "content": "Hello, who are you?"}
409
+ ]
410
+ formatted_text = tokenizer.apply_chat_template(messages, tokenize=False)
411
+ inputs = tokenizer(formatted_text, return_tensors="pt")
412
+
413
+ generate_ids = model.generate(inputs.input_ids, max_length=256)
414
+ tokenizer.batch_decode(generate_ids)[0]
415
+ ```
416
+
417
+ To utilize the prompt format without a system prompt, simply leave the line out.