Transformers
mpt
Composer
MosaicML
llm-foundry
TheBloke commited on
Commit
fa09f8c
1 Parent(s): 291d35c

First commit of MPT7B-Instruct GGML model files

Browse files
Files changed (1) hide show
  1. README.md +185 -0
README.md ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-3.0
3
+ datasets:
4
+ - mosaicml/dolly_hhrlhf
5
+ tags:
6
+ - Composer
7
+ - MosaicML
8
+ - llm-foundry
9
+ inference: false
10
+ ---
11
+
12
+ # MPT-7B-Instruct GGML
13
+
14
+ This is GGML format quantised 4-bit, 5-bit and 8-bit [MosaicML's MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct).
15
+
16
+ This repo is the result of converting to GGML and quantising.
17
+
18
+ ## Repositories available
19
+
20
+ * [MPT-7B: 4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/MPT-7B).
21
+ * [MPT-7B-Instruct: 4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/MPT-7B-Instruct).
22
+
23
+ ## Provided files
24
+ | Name | Quant method | Bits | Size | RAM required | Use case |
25
+ | ---- | ---- | ---- | ---- | ---- | ----- |
26
+ `mpt7b-instructggmlv2.ggmlv2.q4_0.bin` | q4_0 | 4bit | 4.21GB | 7.0GB | 4-bit. |
27
+ `mpt7b-instructggmlv2.ggmlv2.q4_1.bin` | q4_0 | 4bit | 4.63GB | 7.5GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
28
+ `mpt7b-instructggmlv2.ggmlv2.q5_0.bin` | q5_0 | 5bit | 4.63GB | 7.5GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
29
+ `mpt7b-instructggmlv2.ggmlv2.q5_1.bin` | q5_1 | 5bit | 5.06GB | 7.5GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. |
30
+ `mpt7b-instructggmlv2.ggmlv2.q8_0.bin` | q8_0 | 8bit | 7.58GB | 9.0GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
31
+ `mpt7b-instructggmlv2.ggmlv2.fp16.bin` | fp16 | 16bit | GB | GB | Full 16-bit. |
32
+
33
+
34
+ # Original model card: MPT-7B-Instruct
35
+
36
+
37
+ # MPT-7B-Instruct
38
+
39
+ MPT-7B-Instruct is a model for short-form instruction following.
40
+ It is built by finetuning [MPT-7B](https://huggingface.co/spaces/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
41
+ * License: _CC-By-SA-3.0_
42
+ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct)
43
+
44
+
45
+ This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
46
+
47
+ ## Model Date
48
+
49
+ May 5, 2023
50
+
51
+ ## Model License
52
+
53
+ CC-By-SA-3.0
54
+
55
+ ## Documentation
56
+
57
+ * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
58
+ * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
59
+ * Questions: Feel free to contact us via the [MosaicML Community Slack](https://join.slack.com/t/mosaicml-community/shared_invite/zt-1btms90mc-GipE2ufuPkKY0QBrmF3LSA)!
60
+
61
+ ### Example Question/Instruction
62
+
63
+ **Longboi24**:
64
+ > What is a quoll?
65
+
66
+ **MPT-7B-Instruct**:
67
+
68
+ >A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America
69
+
70
+ ## How to Use
71
+
72
+ Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
73
+
74
+ It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
75
+
76
+ ```python
77
+ import transformers
78
+ model = transformers.AutoModelForCausalLM.from_pretrained(
79
+ 'mosaicml/mpt-7b-instruct',
80
+ trust_remote_code=True
81
+ )
82
+ ```
83
+ Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
84
+ This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
85
+ `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
86
+
87
+ To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`:
88
+ ```python
89
+ config = transformers.AutoConfig.from_pretrained(
90
+ 'mosaicml/mpt-7b-instruct',
91
+ trust_remote_code=True
92
+ )
93
+ config.attn_config['attn_impl'] = 'triton'
94
+
95
+ model = transformers.AutoModelForCausalLM.from_pretrained(
96
+ 'mosaicml/mpt-7b-instruct',
97
+ config=config,
98
+ torch_dtype=torch.bfloat16,
99
+ trust_remote_code=True
100
+ )
101
+ model.to(device='cuda:0')
102
+ ```
103
+
104
+ Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
105
+
106
+ ```python
107
+ config = transformers.AutoConfig.from_pretrained(
108
+ 'mosaicml/mpt-7b-instruct',
109
+ trust_remote_code=True
110
+ )
111
+ config.update({"max_seq_len": 4096})
112
+ model = transformers.AutoModelForCausalLM.from_pretrained(
113
+ 'mosaicml/mpt-7b-instruct',
114
+ config=config,
115
+ trust_remote_code=True
116
+ )
117
+ ```
118
+
119
+ This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
120
+
121
+ ```python
122
+ from transformers import AutoTokenizer
123
+ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
124
+ ```
125
+
126
+ ## Model Description
127
+
128
+ The architecture is a modification of a standard decoder-only transformer.
129
+
130
+ The model has been modified from a standard transformer in the following ways:
131
+ * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
132
+ * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
133
+ * It does not use biases
134
+
135
+
136
+ | Hyperparameter | Value |
137
+ |----------------|-------|
138
+ |n_parameters | 6.7B |
139
+ |n_layers | 32 |
140
+ | n_heads | 32 |
141
+ | d_model | 4096 |
142
+ | vocab size | 50432 |
143
+ | sequence length | 2048 |
144
+
145
+ ## PreTraining Data
146
+
147
+ For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
148
+
149
+ The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
150
+
151
+ ## Limitations and Biases
152
+
153
+ _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
154
+
155
+ MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information.
156
+ MPT-7B-Instruct was trained on various public datasets.
157
+ While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
158
+
159
+
160
+ ## Acknowledgements
161
+
162
+ This model was finetuned by Sam Havens and the MosaicML NLP team
163
+
164
+ ## MosaicML Platform
165
+
166
+ If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).
167
+
168
+ ## Disclaimer
169
+
170
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
171
+
172
+ ## Citation
173
+
174
+ Please cite this model using the following format:
175
+
176
+ ```
177
+ @online{MosaicML2023Introducing,
178
+ author = {MosaicML NLP Team},
179
+ title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
180
+ year = {2023},
181
+ url = {www.mosaicml.com/blog/mpt-7b},
182
+ note = {Accessed: 2023-03-28}, % change this date
183
+ urldate = {2023-03-28} % change this date
184
+ }
185
+ ```