File size: 6,788 Bytes
b7b10e4
 
adc1c8c
b7b10e4
132b04f
a5b669b
 
 
 
 
132b04f
a5b669b
 
132b04f
a5b669b
 
132b04f
adc1c8c
 
 
6300dfc
adc1c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809fea7
adc1c8c
809fea7
adc1c8c
809fea7
adc1c8c
809fea7
adc1c8c
393d6b2
 
 
809fea7
 
 
 
 
adc1c8c
 
 
 
 
 
 
809fea7
adc1c8c
 
 
 
 
 
 
 
 
 
393d6b2
adc1c8c
393d6b2
adc1c8c
132b04f
 
a5b669b
132b04f
a5b669b
132b04f
a5b669b
132b04f
a5b669b
132b04f
 
 
 
 
 
 
 
 
a5b669b
132b04f
 
 
 
 
adc1c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809fea7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
license: other
inference: false
---
<!-- header start -->
<div style="width: 100%;">
    <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<!-- header end -->

# OpenAssistant LLaMA 30B SFT 7 GGML

This is a repo of GGML format models for [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor).

It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit and 5bit GGML for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).

This is epoch 7 of OpenAssistant's training of their Llama 30B model.

## Repositories available

* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ).
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GGML).
* [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-HF).

## PROMPT TEMPLATE

This model requires the following prompt template:

```
<|prompter|> prompt goes here
<|assistant|>:
```

## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!

llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508

I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.

For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`.

## Provided files
| Name | Quant method | Bits | Size | RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
`OpenAssistant-30B-epoch7.ggmlv3.q4_0.bin` | q4_0 | 4bit | 20.3GB | 23GB | 4-bit. |
`OpenAssistant-30B-epoch7.ggmlv3.q4_1.bin` | q4_1 | 4bit | 22.4GB | 25GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
`OpenAssistant-30B-epoch7.ggmlv3.q5_0.bin` | q5_0 | 5bit | 22.4GB | 25GB | 5-bit. Higher accuracy, higher resource usage and slower inference.  |
`OpenAssistant-30B-epoch7.ggmlv3.q5_1.bin` | q5_1 | 5bit | 24.4GB | 27GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
`OpenAssistant-30B-epoch7.ggmlv3.q8_9.bin` | q8_0 | 8bit | 24.4GB | 27GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use.|


## How to run in `llama.cpp`

I use the following command line; adjust for your tastes and needs:

```
./main -t 18 -m OpenAssistant-30B-epoch7.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|prompter|>Write a very story about llamas <|assistant|>:"
```

Change `-t 18` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.

## How to run in `text-generation-webui`

GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual.

Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).

Note: at this time text-generation-webui will likely not support the newly updated llama.cpp quantisation methods.

**Thireus** has written a [great guide on how to update it to the latest llama.cpp code](https://huggingface.co/TheBloke/wizardLM-7B-GGML/discussions/5) so that you can likely get support for the new quantisation methods sooner.

<!-- footer start -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.

Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card

```
llama-30b-sft-7:
  dtype: fp16
  log_dir: "llama_log_30b"
  learning_rate: 1e-5
  model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500
  #model_name: OpenAssistant/llama-30b-super-pretrain
  output_dir: llama_model_30b
  deepspeed_config: configs/zero3_config_sft.json
  weight_decay: 0.0
  residual_dropout: 0.0
  max_length: 2048
  use_flash_attention: true
  warmup_steps: 20
  gradient_checkpointing: true
  gradient_accumulation_steps: 12
  per_device_train_batch_size: 2
  per_device_eval_batch_size: 3
  eval_steps: 101
  save_steps: 485
  num_train_epochs: 4
  save_total_limit: 3
  use_custom_sampler: true
  sort_by_length: false
  #save_strategy: steps
  save_strategy: epoch
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
        input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
        val_split: 0.05
    - vicuna:
        val_split: 0.05
        max_val_set: 800
        fraction: 1.0
    - dolly15k:
        val_split: 0.05
        max_val_set: 300
    - grade_school_math_instructions:
        val_split: 0.05
    - code_alpaca:
        val_split: 0.05
        max_val_set: 250
```

- **OASST dataset paper:** https://arxiv.org/abs/2304.07327