Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,155 @@
|
|
1 |
---
|
2 |
license: other
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: other
|
3 |
+
inference: false
|
4 |
---
|
5 |
+
|
6 |
+
# OpenAssistant LLaMA 30B SFT 7 GPTQ
|
7 |
+
|
8 |
+
This in a repo of GGML format models for [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor).
|
9 |
+
|
10 |
+
It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit and 5bit GGML for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
11 |
+
|
12 |
+
This is epoch 7 of OpenAssistant's training of their Llama 30B model.
|
13 |
+
|
14 |
+
## Repositories available
|
15 |
+
|
16 |
+
* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ).
|
17 |
+
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GGML).
|
18 |
+
* [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-HF).
|
19 |
+
|
20 |
+
## PROMPT TEMPLATE
|
21 |
+
|
22 |
+
This model requires the following prompt template:
|
23 |
+
|
24 |
+
```
|
25 |
+
<|prompter|> prompt goes here
|
26 |
+
<|assistant|>:
|
27 |
+
```
|
28 |
+
## How to easily download and use this model in text-generation-webui
|
29 |
+
|
30 |
+
Load text-generation-webui as you normally do.
|
31 |
+
|
32 |
+
1. Click the **Model tab**.
|
33 |
+
2. Under **Download custom model or LoRA**, enter this repo name: `TheBloke/stable-vicuna-13B-GPTQ`.
|
34 |
+
3. Click **Download**.
|
35 |
+
4. Wait until it says it's finished downloading.
|
36 |
+
5. As this is a GPTQ model, fill in the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
|
37 |
+
6. Now click the **Refresh** icon next to **Model** in the top left.
|
38 |
+
7. In the **Model drop-down**: choose this model: `stable-vicuna-13B-GPTQ`.
|
39 |
+
8. Click **Reload the Model** in the top right.
|
40 |
+
9. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
|
41 |
+
|
42 |
+
## Provided files
|
43 |
+
|
44 |
+
I have uploaded two versions of the GPTQ.
|
45 |
+
|
46 |
+
**Compatible file - stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors**
|
47 |
+
|
48 |
+
In the `main` branch - the default one - you will find `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors`
|
49 |
+
|
50 |
+
This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility
|
51 |
+
|
52 |
+
It was created without the `--act-order` parameter. It may have slightly lower inference quality compared to the other file, but is guaranteed to work on all versions of GPTQ-for-LLaMa and text-generation-webui.
|
53 |
+
|
54 |
+
* `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors`
|
55 |
+
* Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
|
56 |
+
* Works with text-generation-webui one-click-installers
|
57 |
+
* Parameters: Groupsize = 128g. No act-order.
|
58 |
+
* Command used to create the GPTQ:
|
59 |
+
```
|
60 |
+
CUDA_VISIBLE_DEVICES=0 python3 llama.py stable-vicuna-13B-HF c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors stable-vicuna-13B-GPTQ-4bit.no-act-order.safetensors
|
61 |
+
```
|
62 |
+
|
63 |
+
**Latest file - stable-vicuna-13B-GPTQ-4bit.latest.act-order.safetensors**
|
64 |
+
|
65 |
+
Created for more recent versions of GPTQ-for-LLaMa, and uses the `--act-order` flag for maximum theoretical performance.
|
66 |
+
|
67 |
+
To access this file, please switch to the `latest` branch fo this repo and download from there.
|
68 |
+
|
69 |
+
* `stable-vicuna-13B-GPTQ-4bit.latest.act-order.safetensors`
|
70 |
+
* Only works with recent GPTQ-for-LLaMa code
|
71 |
+
* **Does not** work with text-generation-webui one-click-installers
|
72 |
+
* Parameters: Groupsize = 128g. **act-order**.
|
73 |
+
* Offers highest quality quantisation, but requires recent GPTQ-for-LLaMa code
|
74 |
+
* Command used to create the GPTQ:
|
75 |
+
```
|
76 |
+
CUDA_VISIBLE_DEVICES=0 python3 llama.py stable-vicuna-13B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors stable-vicuna-13B-GPTQ-4bit.act-order.safetensors
|
77 |
+
```
|
78 |
+
|
79 |
+
## Manual instructions for `text-generation-webui`
|
80 |
+
|
81 |
+
File `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors` can be loaded the same as any other GPTQ file, without requiring any updates to [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
82 |
+
|
83 |
+
[Instructions on using GPTQ 4bit files in text-generation-webui are here](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-\(4-bit-mode\)).
|
84 |
+
|
85 |
+
The other `safetensors` model file was created using `--act-order` to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI.
|
86 |
+
|
87 |
+
If you want to use the act-order `safetensors` files and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI:
|
88 |
+
```
|
89 |
+
# Clone text-generation-webui, if you don't already have it
|
90 |
+
git clone https://github.com/oobabooga/text-generation-webui
|
91 |
+
# Make a repositories directory
|
92 |
+
mkdir text-generation-webui/repositories
|
93 |
+
cd text-generation-webui/repositories
|
94 |
+
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
|
95 |
+
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
96 |
+
```
|
97 |
+
|
98 |
+
Then install this model into `text-generation-webui/models` and launch the UI as follows:
|
99 |
+
```
|
100 |
+
cd text-generation-webui
|
101 |
+
python server.py --model stable-vicuna-13B-GPTQ --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want
|
102 |
+
```
|
103 |
+
|
104 |
+
The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information.
|
105 |
+
|
106 |
+
If you can't update GPTQ-for-LLaMa or don't want to, you can use `stable-vicuna-13B-GPTQ-4bit.no-act-order.safetensors` as mentioned above, which should work without any upgrades to text-generation-webui.
|
107 |
+
|
108 |
+
# Original model card
|
109 |
+
|
110 |
+
```
|
111 |
+
llama-30b-sft-7:
|
112 |
+
dtype: fp16
|
113 |
+
log_dir: "llama_log_30b"
|
114 |
+
learning_rate: 1e-5
|
115 |
+
model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500
|
116 |
+
#model_name: OpenAssistant/llama-30b-super-pretrain
|
117 |
+
output_dir: llama_model_30b
|
118 |
+
deepspeed_config: configs/zero3_config_sft.json
|
119 |
+
weight_decay: 0.0
|
120 |
+
residual_dropout: 0.0
|
121 |
+
max_length: 2048
|
122 |
+
use_flash_attention: true
|
123 |
+
warmup_steps: 20
|
124 |
+
gradient_checkpointing: true
|
125 |
+
gradient_accumulation_steps: 12
|
126 |
+
per_device_train_batch_size: 2
|
127 |
+
per_device_eval_batch_size: 3
|
128 |
+
eval_steps: 101
|
129 |
+
save_steps: 485
|
130 |
+
num_train_epochs: 4
|
131 |
+
save_total_limit: 3
|
132 |
+
use_custom_sampler: true
|
133 |
+
sort_by_length: false
|
134 |
+
#save_strategy: steps
|
135 |
+
save_strategy: epoch
|
136 |
+
datasets:
|
137 |
+
- oasst_export:
|
138 |
+
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
|
139 |
+
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
|
140 |
+
val_split: 0.05
|
141 |
+
- vicuna:
|
142 |
+
val_split: 0.05
|
143 |
+
max_val_set: 800
|
144 |
+
fraction: 1.0
|
145 |
+
- dolly15k:
|
146 |
+
val_split: 0.05
|
147 |
+
max_val_set: 300
|
148 |
+
- grade_school_math_instructions:
|
149 |
+
val_split: 0.05
|
150 |
+
- code_alpaca:
|
151 |
+
val_split: 0.05
|
152 |
+
max_val_set: 250
|
153 |
+
```
|
154 |
+
|
155 |
+
- **OASST dataset paper:** https://arxiv.org/abs/2304.07327
|