--- license: other inference: false --- # OpenAssistant LLaMA 30B SFT 7 GPTQ This in a repo of GPTQ format 4bit quantised models for [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor). It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit GPU inference using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). This is epoch 7 of OpenAssistant's training of their Llama 30B model. **Please note that these models will need 24GB VRAM or greater to use effectively** ## Repositories available * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ). * [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GGML). * [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-HF). ## PROMPT TEMPLATE This model requires the following prompt template: ``` <|prompter|> prompt goes here <|assistant|>: ``` ## CHOICE OF MODELS Three sets of models are provided: * Groupsize = None * Should work reliably in 24GB VRAM * Uses --act-order for the best possible inference quality given its lack of group_size. * Groupsize = 1024 * Theoretically higher inference accuracy * May OOM on long context lengths in 24GB VRAM * Groupsize = 128 * Optimal setting for highest inference quality * Will definitely need more than 24GB VRAM on longer context lengths (1000-1500+ tokens returned) For the 128g and 1024g models, two versions are available: * `compat.no-act-order.safetensor` * Works with all versions of GPTQ-for-LLaMa, including the version in text-generation-webui one-click-installers * `latest.act-order.safetensors` * uses `--act-order` for higher inference quality * requires more recent GPTQ-for-LLaMa code, therefore will not currently work with one-click-installers ## HOW TO CHOOSE YOUR MODEL I have used branches to separate the models. This means you can clone the branch you want and not got model files you don't need. If you have 24GB VRAM you are strongly recommended to use the file in `main`, with group_size = None. This is fully compatible, and won't OOM. * Branch: **main** = groupsize None, `OpenAssistant-SFT-7-Llama-30B-GPTQ-4bit.safetensors` file * Branch: **1024-compat** = groupsize 1024, `compat.no-act-order.safetensors` file * Branch: **1024-latest** = groupsize 1024, `latest.act-order.safetensors` file * Branch: **128-compat** = groupsize 128, `compat.no-act-order.safetensors` file * Branch: **128-latest** = groupsize 128, `latest.act-order.safetensors` file ![branches](https://i.imgur.com/PdiHnLxm.png) ## How to easily download and run the 1024g compat model in text-generation-webui Open the text-generation-webui UI as normal. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ`. 3. Click **Download**. 4. Wait until it says it's finished downloading. 5. Click the **Refresh** icon next to **Model** in the top left. 6. In the **Model drop-down**: choose the model you just downloaded, `OpenAssistant-SFT-7-Llama-30B-GPTQ`. 7. If you see an error in the bottom right, ignore it - it's temporary. 8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = None`, `model_type = Llama` 9. Click **Save settings for this model** in the top right. 10. Click **Reload the Model** in the top right. 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! ## Manual instructions for `text-generation-webui` The `compat.no-act-order.safetensors` files can be loaded the same as any other GPTQ file, without requiring any updates to [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui). [Instructions on using GPTQ 4bit files in text-generation-webui are here](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-\(4-bit-mode\)). The `latest.act-order.safetensors` files were created using `--act-order` to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI. If you want to use the act-order `safetensors` files and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI: ``` # Clone text-generation-webui, if you don't already have it git clone https://github.com/oobabooga/text-generation-webui # Make a repositories directory mkdir text-generation-webui/repositories cd text-generation-webui/repositories # Clone the latest GPTQ-for-LLaMa code inside text-generation-webui git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa ``` Then install this model into `text-generation-webui/models` and launch the UI as follows: ``` cd text-generation-webui python server.py --model OpenAssistant-SFT-7-Llama-30B-GPTQ --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want ``` To update the CUDA branch of GPTQ-for-LLaMa, you can do the following. **This requires a C/C++ compiler and the CUDA toolkit installed!** ``` # Clone text-generation-webui, if you don't already have it git clone https://github.com/oobabooga/text-generation-webui # Make a repositories directory mkdir text-generation-webui/repositories cd text-generation-webui/repositories # Clone the latest GPTQ-for-LLaMa code inside text-generation-webui git clone -b cuda https://github.com/qwopqwop200/GPTQ-for-LLaMa cd GPTQ-for-LLaMa pip uninstall quant-cuda # uninstall existing CUDA version python setup_cuda.py install # install latest version ``` The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information. If you can't update GPTQ-for-LLaMa or don't want to, please use a `compat.no-act-order.safetensor` file. # Original model card ``` llama-30b-sft-7: dtype: fp16 log_dir: "llama_log_30b" learning_rate: 1e-5 model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500 #model_name: OpenAssistant/llama-30b-super-pretrain output_dir: llama_model_30b deepspeed_config: configs/zero3_config_sft.json weight_decay: 0.0 residual_dropout: 0.0 max_length: 2048 use_flash_attention: true warmup_steps: 20 gradient_checkpointing: true gradient_accumulation_steps: 12 per_device_train_batch_size: 2 per_device_eval_batch_size: 3 eval_steps: 101 save_steps: 485 num_train_epochs: 4 save_total_limit: 3 use_custom_sampler: true sort_by_length: false #save_strategy: steps save_strategy: epoch datasets: - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz val_split: 0.05 - vicuna: val_split: 0.05 max_val_set: 800 fraction: 1.0 - dolly15k: val_split: 0.05 max_val_set: 300 - grade_school_math_instructions: val_split: 0.05 - code_alpaca: val_split: 0.05 max_val_set: 250 ``` - **OASST dataset paper:** https://arxiv.org/abs/2304.07327