TheBloke commited on
Commit
efae1d7
1 Parent(s): 3772ebf

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -18
README.md CHANGED
@@ -1,14 +1,26 @@
1
  ---
 
2
  datasets:
3
  - garage-bAInd/Open-Platypus
4
  inference: false
5
  language:
6
  - en
7
- license: llama2
8
  model_creator: garage-bAInd
9
- model_link: https://huggingface.co/garage-bAInd/Platypus2-13B
10
  model_name: Platypus2
11
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
12
  quantized_by: TheBloke
13
  ---
14
 
@@ -44,9 +56,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
44
  <!-- repositories-available start -->
45
  ## Repositories available
46
 
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ)
48
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Platypus2-13B-GGUF)
49
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Platypus2-13B-GGML)
50
  * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Platypus2-13B)
51
  <!-- repositories-available end -->
52
 
@@ -64,7 +76,15 @@ Below is an instruction that describes a task. Write a response that appropriate
64
  ```
65
 
66
  <!-- prompt-template end -->
 
 
 
 
67
 
 
 
 
 
68
  <!-- README_GPTQ.md-provided-files start -->
69
  ## Provided files and GPTQ parameters
70
 
@@ -89,13 +109,13 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
89
 
90
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
91
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
92
- | [main](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
93
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
94
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
95
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
97
  | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
98
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
99
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
100
 
101
  <!-- README_GPTQ.md-provided-files end -->
@@ -103,10 +123,10 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
103
  <!-- README_GPTQ.md-download-from-branches start -->
104
  ## How to download from branches
105
 
106
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Platypus2-13B-GPTQ:gptq-4bit-32g-actorder_True`
107
  - With Git, you can clone a branch with:
108
  ```
109
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Platypus2-13B-GPTQ
110
  ```
111
  - In Python Transformers code, the branch is the `revision` parameter; see below.
112
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -119,7 +139,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
119
 
120
  1. Click the **Model tab**.
121
  2. Under **Download custom model or LoRA**, enter `TheBloke/Platypus2-13B-GPTQ`.
122
- - To download from a specific branch, enter for example `TheBloke/Platypus2-13B-GPTQ:gptq-4bit-32g-actorder_True`
123
  - see Provided Files above for the list of branches for each option.
124
  3. Click **Download**.
125
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -167,10 +187,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
167
 
168
  model_name_or_path = "TheBloke/Platypus2-13B-GPTQ"
169
  # To use a different branch, change revision
170
- # For example: revision="gptq-4bit-32g-actorder_True"
171
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
172
- torch_dtype=torch.float16,
173
  device_map="auto",
 
174
  revision="main")
175
 
176
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -188,7 +208,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
188
  print("\n\n*** Generate:")
189
 
190
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
191
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
192
  print(tokenizer.decode(output[0]))
193
 
194
  # Inference can also be done using transformers' pipeline
@@ -199,9 +219,11 @@ pipe = pipeline(
199
  model=model,
200
  tokenizer=tokenizer,
201
  max_new_tokens=512,
 
202
  temperature=0.7,
203
  top_p=0.95,
204
- repetition_penalty=1.15
 
205
  )
206
 
207
  print(pipe(prompt_template)[0]['generated_text'])
@@ -226,10 +248,12 @@ For further support, and discussions on these models and AI in general, join us
226
 
227
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
228
 
229
- ## Thanks, and how to contribute.
230
 
231
  Thanks to the [chirper.ai](https://chirper.ai) team!
232
 
 
 
233
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
234
 
235
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -241,7 +265,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
241
 
242
  **Special thanks to**: Aemon Algiz.
243
 
244
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
245
 
246
 
247
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/garage-bAInd/Platypus2-13B
3
  datasets:
4
  - garage-bAInd/Open-Platypus
5
  inference: false
6
  language:
7
  - en
8
+ license: cc-by-nc-sa-4.0
9
  model_creator: garage-bAInd
 
10
  model_name: Platypus2
11
  model_type: llama
12
+ prompt_template: 'Below is an instruction that describes a task. Write a response
13
+ that appropriately completes the request.
14
+
15
+
16
+ ### Instruction:
17
+
18
+ {prompt}
19
+
20
+
21
+ ### Response:
22
+
23
+ '
24
  quantized_by: TheBloke
25
  ---
26
 
 
56
  <!-- repositories-available start -->
57
  ## Repositories available
58
 
59
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Platypus2-13B-AWQ)
60
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ)
61
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Platypus2-13B-GGUF)
 
62
  * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Platypus2-13B)
63
  <!-- repositories-available end -->
64
 
 
76
  ```
77
 
78
  <!-- prompt-template end -->
79
+ <!-- licensing start -->
80
+ ## Licensing
81
+
82
+ The creator of the source model has listed its license as `cc-by-nc-sa-4.0`, and this quantization has therefore used that same license.
83
 
84
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
85
+
86
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [garage-bAInd's Platypus2](https://huggingface.co/garage-bAInd/Platypus2-13B).
87
+ <!-- licensing end -->
88
  <!-- README_GPTQ.md-provided-files start -->
89
  ## Provided files and GPTQ parameters
90
 
 
109
 
110
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
111
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
112
+ | [main](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
113
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
114
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
115
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
116
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
117
  | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
118
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
119
  | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Platypus2-13B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
120
 
121
  <!-- README_GPTQ.md-provided-files end -->
 
123
  <!-- README_GPTQ.md-download-from-branches start -->
124
  ## How to download from branches
125
 
126
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Platypus2-13B-GPTQ:main`
127
  - With Git, you can clone a branch with:
128
  ```
129
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Platypus2-13B-GPTQ
130
  ```
131
  - In Python Transformers code, the branch is the `revision` parameter; see below.
132
  <!-- README_GPTQ.md-download-from-branches end -->
 
139
 
140
  1. Click the **Model tab**.
141
  2. Under **Download custom model or LoRA**, enter `TheBloke/Platypus2-13B-GPTQ`.
142
+ - To download from a specific branch, enter for example `TheBloke/Platypus2-13B-GPTQ:main`
143
  - see Provided Files above for the list of branches for each option.
144
  3. Click **Download**.
145
  4. The model will start downloading. Once it's finished it will say "Done".
 
187
 
188
  model_name_or_path = "TheBloke/Platypus2-13B-GPTQ"
189
  # To use a different branch, change revision
190
+ # For example: revision="main"
191
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
192
  device_map="auto",
193
+ trust_remote_code=False,
194
  revision="main")
195
 
196
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
208
  print("\n\n*** Generate:")
209
 
210
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
211
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
212
  print(tokenizer.decode(output[0]))
213
 
214
  # Inference can also be done using transformers' pipeline
 
219
  model=model,
220
  tokenizer=tokenizer,
221
  max_new_tokens=512,
222
+ do_sample=True,
223
  temperature=0.7,
224
  top_p=0.95,
225
+ top_k=40,
226
+ repetition_penalty=1.1
227
  )
228
 
229
  print(pipe(prompt_template)[0]['generated_text'])
 
248
 
249
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
250
 
251
+ ## Thanks, and how to contribute
252
 
253
  Thanks to the [chirper.ai](https://chirper.ai) team!
254
 
255
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
256
+
257
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
258
 
259
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
265
 
266
  **Special thanks to**: Aemon Algiz.
267
 
268
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
269
 
270
 
271
  Thank you to all my generous patrons and donaters!