TheBloke commited on
Commit
26574da
1 Parent(s): b8ea0d0

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +209 -85
README.md CHANGED
@@ -1,9 +1,15 @@
1
  ---
 
 
2
  inference: false
3
  language:
4
  - eng
5
- license: other
 
 
 
6
  model_type: llama
 
7
  tags:
8
  - llama-2
9
  - sft
@@ -26,133 +32,155 @@ tags:
26
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
27
  <!-- header end -->
28
 
29
- # NousResearch's Redmond Puffin 13B V1.3 GPTQ
 
 
30
 
31
- These files are GPTQ model files for [NousResearch's Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
 
32
 
33
- Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
34
-
35
- Many thanks to William Beauchamp from [Chai](https://chai-research.com/) for providing the hardware used to make and upload these files!
36
 
37
- **Note**: The files in this repo were updated on July 20th to reflect the [V1.3 release of NousResearch's Redmond Puffin 13B](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
38
 
 
 
39
  ## Repositories available
40
 
41
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ)
42
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML)
43
- * [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
 
 
44
 
45
- ## Prompt template: Human-Response
 
46
 
47
  ```
48
  ### human: {prompt}
49
 
50
  ### response:
51
- ```
52
- Optional reccomended pre-prompt / system prompt:
53
 
54
  ```
55
- ### human: Interact in conversation to the best of your ability, please be concise, logical, intelligent and coherent.
56
 
57
- ### response: Sure! sounds good.
58
 
59
- ### human: {prompt}
60
-
61
- ### response:
62
- ```
63
-
64
- ## Provided files
65
 
66
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
67
 
68
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
69
 
70
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
71
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
72
- | main | 4 | 128 | False | 7.26 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
73
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
74
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
75
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
76
- | gptq-8bit--1g-actorder_True | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
77
- | gptq-8bit-128g-actorder_False | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
78
- | gptq-8bit-128g-actorder_True | 8 | 128 | True | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
79
- | gptq-8bit-64g-actorder_True | 8 | 64 | True | 13.95 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
 
 
 
 
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  ## How to download from branches
82
 
83
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Redmond-Puffin-13B-GPTQ:gptq-4bit-32g-actorder_True`
84
  - With Git, you can clone a branch with:
85
  ```
86
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ`
87
  ```
88
  - In Python Transformers code, the branch is the `revision` parameter; see below.
89
-
 
90
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
91
 
92
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
93
 
94
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
95
 
96
  1. Click the **Model tab**.
97
  2. Under **Download custom model or LoRA**, enter `TheBloke/Redmond-Puffin-13B-GPTQ`.
98
  - To download from a specific branch, enter for example `TheBloke/Redmond-Puffin-13B-GPTQ:gptq-4bit-32g-actorder_True`
99
  - see Provided Files above for the list of branches for each option.
100
  3. Click **Download**.
101
- 4. The model will start downloading. Once it's finished it will say "Done"
102
  5. In the top left, click the refresh icon next to **Model**.
103
  6. In the **Model** dropdown, choose the model you just downloaded: `Redmond-Puffin-13B-GPTQ`
104
  7. The model will automatically load, and is now ready for use!
105
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
106
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
107
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
108
 
 
109
  ## How to use this GPTQ model from Python code
110
 
111
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
 
 
 
 
 
 
 
112
 
113
- `GITHUB_ACTIONS=true pip install auto-gptq`
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
- Then try the following example code:
116
 
117
  ```python
118
- from transformers import AutoTokenizer, pipeline, logging
119
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
120
 
121
  model_name_or_path = "TheBloke/Redmond-Puffin-13B-GPTQ"
122
- model_basename = "model"
123
-
124
- use_triton = False
 
 
 
125
 
126
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
127
 
128
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
129
- model_basename=model_basename,
130
- use_safetensors=True,
131
- trust_remote_code=False,
132
- device="cuda:0",
133
- use_triton=use_triton,
134
- quantize_config=None)
135
-
136
- """
137
- To download from a specific branch, use the revision parameter, as in this example:
138
-
139
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
140
- revision="gptq-4bit-32g-actorder_True",
141
- model_basename=model_basename,
142
- use_safetensors=True,
143
- trust_remote_code=False,
144
- device="cuda:0",
145
- quantize_config=None)
146
- """
147
-
148
  prompt = "Tell me about AI"
149
- prompt_template=f'''### human: Interact in conversation to the best of your ability, please be concise, logical, intelligent and coherent.
150
 
151
- ### response: Sure! sounds good.
152
-
153
- ### human: {prompt}
154
 
155
- ### response:'''
156
 
157
  print("\n\n*** Generate:")
158
 
@@ -162,9 +190,6 @@ print(tokenizer.decode(output[0]))
162
 
163
  # Inference can also be done using transformers' pipeline
164
 
165
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
166
- logging.set_verbosity(logging.CRITICAL)
167
-
168
  print("*** Pipeline:")
169
  pipe = pipeline(
170
  "text-generation",
@@ -178,12 +203,17 @@ pipe = pipeline(
178
 
179
  print(pipe(prompt_template)[0]['generated_text'])
180
  ```
 
181
 
 
182
  ## Compatibility
183
 
184
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
185
 
186
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
187
 
188
  <!-- footer start -->
189
  <!-- 200823 -->
@@ -208,7 +238,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
208
 
209
  **Special thanks to**: Aemon Algiz.
210
 
211
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
212
 
213
 
214
  Thank you to all my generous patrons and donaters!
@@ -226,7 +256,7 @@ And thank you again to a16z for their generous grant.
226
 
227
  **The first commercially available language model released by Nous Research!**
228
 
229
- Redmond-Puffin-13B is one of the worlds first llama-2 based, fine-tuned language models, leveraging a hand curated set of 3K high quality examples, many of which take full advantage of the 4096 context length of Llama 2. This model was fine-tuned by Nous Research, with LDJ leading the training and dataset curation, along with significant dataset formation contributions by J-Supha.
230
 
231
  Special thank you to Redmond AI for sponsoring the compute.
232
 
@@ -236,7 +266,7 @@ Notable mentions for assisting in some of the training issues goes to: Caseus an
236
 
237
  ## Model Training
238
 
239
- Redmond-Puffin-13B-V1.3 is a new model trained for multiple epochs on a dataset of 3,000 carefully curated GPT-4 examples, most of which are long context conversations between a real human and GPT-4.
240
 
241
  Additional data came from carefully curated sub sections of datasets such as CamelAI's Physics, Chemistry, Biology and Math.
242
 
@@ -248,7 +278,6 @@ The reccomended model usage is:
248
  ### human:
249
 
250
  ### response:
251
-
252
  ```
253
  Optional reccomended pre-prompt / system prompt:
254
 
@@ -258,11 +287,27 @@ Optional reccomended pre-prompt / system prompt:
258
  ### response: Sure! sounds good.
259
  ```
260
 
261
- ## Improvements over previous version:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
 
263
- The original Puffin model was loved by many, however it was quickly discovered to have dataset errors in a significant amount of the conversations.
264
- Puffin-V1.3 dataset solves this issue and the resulting fixed model has now fully finished training!
265
 
 
266
 
267
  ## Notable Features:
268
 
@@ -284,16 +329,95 @@ We plan to have these solved in an updated Puffin model in the very near future,
284
 
285
  ## Future Plans
286
 
287
- This is a relatively early build amongst the grand plans for the future of Puffin!
288
 
289
  Current limitations: Some token mismatch problems have been identified, these may effect the current output quality, we plan to have this solved in Puffin V2 along with other improvements.
290
 
291
  ## How you can help!
292
 
293
- In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations.
294
 
295
- If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact ldj on discord!
296
 
297
- ## Benchmarks coming soon
298
 
299
- benchmarks coming soon!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - LDJnr/Puffin
4
  inference: false
5
  language:
6
  - eng
7
+ license: llama2
8
+ model_creator: NousResearch
9
+ model_link: https://huggingface.co/NousResearch/Redmond-Puffin-13B
10
+ model_name: Redmond Puffin 13B V1.3
11
  model_type: llama
12
+ quantized_by: TheBloke
13
  tags:
14
  - llama-2
15
  - sft
 
32
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
  <!-- header end -->
34
 
35
+ # Redmond Puffin 13B V1.3 - GPTQ
36
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
37
+ - Original model: [Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
38
 
39
+ <!-- description start -->
40
+ ## Description
41
 
42
+ This repo contains GPTQ model files for [NousResearch's Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
 
 
43
 
44
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
45
 
46
+ <!-- description end -->
47
+ <!-- repositories-available start -->
48
  ## Repositories available
49
 
50
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGUF)
52
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML)
53
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
54
+ <!-- repositories-available end -->
55
 
56
+ <!-- prompt-template start -->
57
+ ## Prompt template: Human-Response2
58
 
59
  ```
60
  ### human: {prompt}
61
 
62
  ### response:
 
 
63
 
64
  ```
 
65
 
66
+ <!-- prompt-template end -->
67
 
68
+ <!-- README_GPTQ.md-provided-files start -->
69
+ ## Provided files and GPTQ parameters
 
 
 
 
70
 
71
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
72
 
73
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
74
 
75
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
76
+
77
+ <details>
78
+ <summary>Explanation of GPTQ parameters</summary>
79
+
80
+ - Bits: The bit size of the quantised model.
81
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
82
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
83
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
84
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
85
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
86
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
87
+
88
+ </details>
89
 
90
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
91
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
92
+ | [main](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
93
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
94
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
95
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
97
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
98
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
99
+ | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
100
+
101
+ <!-- README_GPTQ.md-provided-files end -->
102
+
103
+ <!-- README_GPTQ.md-download-from-branches start -->
104
  ## How to download from branches
105
 
106
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Redmond-Puffin-13B-GPTQ:gptq-4bit-32g-actorder_True`
107
  - With Git, you can clone a branch with:
108
  ```
109
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ
110
  ```
111
  - In Python Transformers code, the branch is the `revision` parameter; see below.
112
+ <!-- README_GPTQ.md-download-from-branches end -->
113
+ <!-- README_GPTQ.md-text-generation-webui start -->
114
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
115
 
116
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
 
118
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
119
 
120
  1. Click the **Model tab**.
121
  2. Under **Download custom model or LoRA**, enter `TheBloke/Redmond-Puffin-13B-GPTQ`.
122
  - To download from a specific branch, enter for example `TheBloke/Redmond-Puffin-13B-GPTQ:gptq-4bit-32g-actorder_True`
123
  - see Provided Files above for the list of branches for each option.
124
  3. Click **Download**.
125
+ 4. The model will start downloading. Once it's finished it will say "Done".
126
  5. In the top left, click the refresh icon next to **Model**.
127
  6. In the **Model** dropdown, choose the model you just downloaded: `Redmond-Puffin-13B-GPTQ`
128
  7. The model will automatically load, and is now ready for use!
129
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
130
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
131
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
132
+ <!-- README_GPTQ.md-text-generation-webui end -->
133
 
134
+ <!-- README_GPTQ.md-use-from-python start -->
135
  ## How to use this GPTQ model from Python code
136
 
137
+ ### Install the necessary packages
138
+
139
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
140
+
141
+ ```shell
142
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
143
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
144
+ ```
145
+
146
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
147
 
148
+ ```shell
149
+ pip3 uninstall -y auto-gptq
150
+ git clone https://github.com/PanQiWei/AutoGPTQ
151
+ cd AutoGPTQ
152
+ pip3 install .
153
+ ```
154
+
155
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
156
+
157
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
158
+ ```shell
159
+ pip3 uninstall -y transformers
160
+ pip3 install git+https://github.com/huggingface/transformers.git
161
+ ```
162
 
163
+ ### You can then use the following code
164
 
165
  ```python
166
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
167
 
168
  model_name_or_path = "TheBloke/Redmond-Puffin-13B-GPTQ"
169
+ # To use a different branch, change revision
170
+ # For example: revision="gptq-4bit-32g-actorder_True"
171
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
172
+ torch_dtype=torch.bfloat16,
173
+ device_map="auto",
174
+ revision="main")
175
 
176
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  prompt = "Tell me about AI"
179
+ prompt_template=f'''### human: {prompt}
180
 
181
+ ### response:
 
 
182
 
183
+ '''
184
 
185
  print("\n\n*** Generate:")
186
 
 
190
 
191
  # Inference can also be done using transformers' pipeline
192
 
 
 
 
193
  print("*** Pipeline:")
194
  pipe = pipeline(
195
  "text-generation",
 
203
 
204
  print(pipe(prompt_template)[0]['generated_text'])
205
  ```
206
+ <!-- README_GPTQ.md-use-from-python end -->
207
 
208
+ <!-- README_GPTQ.md-compatibility start -->
209
  ## Compatibility
210
 
211
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
212
 
213
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
214
+
215
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
216
+ <!-- README_GPTQ.md-compatibility end -->
217
 
218
  <!-- footer start -->
219
  <!-- 200823 -->
 
238
 
239
  **Special thanks to**: Aemon Algiz.
240
 
241
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
242
 
243
 
244
  Thank you to all my generous patrons and donaters!
 
256
 
257
  **The first commercially available language model released by Nous Research!**
258
 
259
+ Redmond-Puffin-13B is likely the worlds first llama-2 based, fine-tuned language models, leveraging a hand curated set of 3K high quality examples, many of which take full advantage of the 4096 context length of Llama 2. This model was fine-tuned by Nous Research, with LDJ leading the training and dataset curation, along with significant dataset formation contributions by J-Supha.
260
 
261
  Special thank you to Redmond AI for sponsoring the compute.
262
 
 
266
 
267
  ## Model Training
268
 
269
+ Redmond-Puffin 13B-V1.3 is a new model trained for multiple epochs on a dataset of 3,000 carefully curated GPT-4 examples, most of which are long context conversations between a real human and GPT-4.
270
 
271
  Additional data came from carefully curated sub sections of datasets such as CamelAI's Physics, Chemistry, Biology and Math.
272
 
 
278
  ### human:
279
 
280
  ### response:
 
281
  ```
282
  Optional reccomended pre-prompt / system prompt:
283
 
 
287
  ### response: Sure! sounds good.
288
  ```
289
 
290
+ ## When should I use Puffin or Hermes 2?
291
+
292
+ Puffin and Hermes-2 both beat previous SOTA for GPT4ALL benchmarks, with Hermes-2 winning by a 0.1% margin over Puffin.
293
+
294
+ - Hermes 2 is trained on purely single turn instruction examples.
295
+
296
+ - Puffin is trained mostly on multi-turn, long context, highly curated and cleaned GPT-4 conversations with real humans, as well as curated single-turn examples relating to Physics, Bio, Math and Chem.
297
+
298
+ For these reasons, it's reccomended to give Puffin a try if you want to have multi-turn conversations and/or long context communication.
299
+
300
+ ## Example Outputs!:
301
+
302
+ ![puffin](https://i.imgur.com/P0MsN8B.png)
303
+
304
+ ![puffin](https://i.imgur.com/8EO3ThV.png)
305
+
306
+ ![puffin](https://i.imgur.com/5IWolFw.png)
307
 
308
+ ![puffin](https://i.imgur.com/TQui8m7.png)
 
309
 
310
+ ![puffin](https://i.imgur.com/tderIfl.png)
311
 
312
  ## Notable Features:
313
 
 
329
 
330
  ## Future Plans
331
 
332
+ This is a relatively early build amongst the grand plans for the future of Puffin!
333
 
334
  Current limitations: Some token mismatch problems have been identified, these may effect the current output quality, we plan to have this solved in Puffin V2 along with other improvements.
335
 
336
  ## How you can help!
337
 
338
+ In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations.
339
 
340
+ If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact LDJ on discord!
341
 
342
+ ## Benchmarks!
343
 
344
+ As of Puffins release, it achieves a new SOTA for the GPT4All benchmarks! Supplanting Hermes for the #1 position!
345
+ (Rounded to nearest tenth)
346
+
347
+ Previous Sota: Hermes - 68.8
348
+ New Sota: Puffin - 69.9 (+1.1)
349
+
350
+ note: After release, Puffin has since had its average GPT4All score beaten by 0.1%, by Nous' very own Model Hermes-2!
351
+ Latest SOTA w/ Hermes 2- 70.0 (+0.1 over Puffins 69.9 score)
352
+
353
+ That being said, Puffin supplants Hermes-2 for the #1 spot in Arc-E, HellaSwag and Winogrande!
354
+
355
+ Puffin also perfectly ties with Hermes in PIQA, however Hermes-2 still excels in much of Big Bench and AGIEval, so it's highly reccomended you give it a try as well!
356
+
357
+ GPT4all :
358
+
359
+ ```
360
+ | Task |Version| Metric |Value | |Stderr|
361
+ |-------------|------:|--------|-----:|---|-----:|
362
+ |arc_challenge| 0|acc |0.4983|± |0.0146|
363
+ | | |acc_norm|0.5068|± |0.0146|
364
+ |arc_easy | 0|acc |0.7980|± |0.0082|
365
+ | | |acc_norm|0.7757|± |0.0086|
366
+ |boolq | 1|acc |0.8150|± |0.0068|
367
+ |hellaswag | 0|acc |0.6132|± |0.0049|
368
+ | | |acc_norm|0.8043|± |0.0040|
369
+ |openbookqa | 0|acc |0.3560|± |0.0214|
370
+ | | |acc_norm|0.4560|± |0.0223|
371
+ |piqa | 0|acc |0.7954|± |0.0094|
372
+ | | |acc_norm|0.8069|± |0.0092|
373
+ |winogrande | 0|acc |0.7245|± |0.0126|
374
+ ```
375
+
376
+
377
+
378
+ ```
379
+ | Task |Version| Metric |Value | |Stderr|
380
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
381
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5368|± |0.0363|
382
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.7127|± |0.0236|
383
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3023|± |0.0286|
384
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.1003|± |0.0159|
385
+ | | |exact_str_match |0.0000|± |0.0000|
386
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2520|± |0.0194|
387
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.1743|± |0.0143|
388
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4200|± |0.0285|
389
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.2900|± |0.0203|
390
+ |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158|
391
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5430|± |0.0111|
392
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4442|± |0.0235|
393
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2074|± |0.0128|
394
+ |bigbench_snarks | 0|multiple_choice_grade|0.5083|± |0.0373|
395
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.4970|± |0.0159|
396
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.3260|± |0.0148|
397
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2136|± |0.0116|
398
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1326|± |0.0081|
399
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4200|± |0.0285|
400
+ ```
401
+
402
+ AGI Eval:
403
+
404
+ ```
405
+ | Task |Version| Metric |Value | |Stderr|
406
+ |------------------------------|------:|--------|-----:|---|-----:|
407
+ |agieval_aqua_rat | 0|acc |0.2283|± |0.0264|
408
+ | | |acc_norm|0.2244|± |0.0262|
409
+ |agieval_logiqa_en | 0|acc |0.2780|± |0.0176|
410
+ | | |acc_norm|0.3164|± |0.0182|
411
+ |agieval_lsat_ar | 0|acc |0.2348|± |0.0280|
412
+ | | |acc_norm|0.2043|± |0.0266|
413
+ |agieval_lsat_lr | 0|acc |0.3392|± |0.0210|
414
+ | | |acc_norm|0.2961|± |0.0202|
415
+ |agieval_lsat_rc | 0|acc |0.4387|± |0.0303|
416
+ | | |acc_norm|0.3569|± |0.0293|
417
+ |agieval_sat_en | 0|acc |0.5874|± |0.0344|
418
+ | | |acc_norm|0.5194|± |0.0349|
419
+ |agieval_sat_en_without_passage| 0|acc |0.4223|± |0.0345|
420
+ | | |acc_norm|0.3447|± |0.0332|
421
+ |agieval_sat_math | 0|acc |0.3364|± |0.0319|
422
+ | | |acc_norm|0.2773|± |0.0302|
423
+ ```