TheBloke commited on
Commit
6580135
1 Parent(s): eee08e5

Initial GGML model commit

Browse files
Files changed (1) hide show
  1. README.md +352 -0
README.md ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ ---
5
+
6
+ <!-- header start -->
7
+ <div style="width: 100%;">
8
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
9
+ </div>
10
+ <div style="display: flex; justify-content: space-between; width: 100%;">
11
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
13
+ </div>
14
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
+ </div>
17
+ </div>
18
+ <!-- header end -->
19
+
20
+ # Allen AI's Tulu 7B GGML
21
+
22
+ These files are GGML format model files for [Allen AI's Tulu 7B](https://huggingface.co/TheBloke/tulu-7B-fp16).
23
+
24
+ These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
25
+
26
+ In order to use the increased context length, you can presently use:
27
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
28
+
29
+ Support is also expected to come to llama.cpp, however work is still being done to find the optimal implementation.
30
+
31
+ To use the increased context with KoboldCpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
32
+
33
+ **NOTE**: Increased context length is an area seeing rapid developments and improvements. It is quite possible that these models may be superseded by new developments in the coming days. If that's the case, I will remove them, or update this README as appropriate.
34
+
35
+ ## Repositories available
36
+
37
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Tulu-7B-SuperHOT-8K-GPTQ)
38
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Tulu-7B-SuperHOT-8K-GGML)
39
+ * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Tulu-7B-SuperHOT-8K-fp16)
40
+ * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/allenai/tulu-7b)
41
+
42
+ <!-- compatibility_ggml start -->
43
+ ## Compatibility
44
+
45
+ These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
46
+
47
+ However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
48
+
49
+ ## Explanation of the new k-quant methods
50
+
51
+ The new methods available are:
52
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
53
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
54
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
55
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
56
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
57
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
58
+
59
+ Refer to the Provided Files table below to see what files use which methods, and how.
60
+ <!-- compatibility_ggml end -->
61
+
62
+ ## Provided files
63
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
64
+ | ---- | ---- | ---- | ---- | ---- | ----- |
65
+ | tulu-7b-superhot-8k.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB | 6.29 GB | Original llama.cpp quant method, 4-bit. |
66
+ | tulu-7b-superhot-8k.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB | 6.71 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
67
+ | tulu-7b-superhot-8k.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB | 7.13 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
68
+ | tulu-7b-superhot-8k.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB | 7.56 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
69
+ | tulu-7b-superhot-8k.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB | 9.66 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
70
+
71
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
72
+
73
+ ## How to run in `koboldcpp`
74
+
75
+ On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
76
+
77
+ ```
78
+ python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas --gpulayers 100 tulu-7b-superhot-8k.ggmlv3.q4_K_M.bin
79
+ ```
80
+
81
+ Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
82
+
83
+ For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
84
+
85
+ <!-- footer start -->
86
+ ## Discord
87
+
88
+ For further support, and discussions on these models and AI in general, join us at:
89
+
90
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
91
+
92
+ ## Thanks, and how to contribute.
93
+
94
+ Thanks to the [chirper.ai](https://chirper.ai) team!
95
+
96
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
97
+
98
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
99
+
100
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
101
+
102
+ * Patreon: https://patreon.com/TheBlokeAI
103
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
104
+
105
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
106
+
107
+ **Patreon special mentions**: RoA, Lone Striker, Gabriel Puliatti, Derek Yates, Randy H, Jonathan Leane, Eugene Pentland, Karl Bernard, Viktor Bowallius, senxiiz, Daniel P. Andersen, Pierre Kircher, Deep Realms, Cory Kujawski, Oscar Rangel, Fen Risland, Ajan Kanaga, LangChain4j, webtim, Nikolai Manek, Trenton Dambrowitz, Raven Klaugh, Kalila, Khalefa Al-Ahmad, Chris McCloskey, Luke @flexchar, Ai Maven, Dave, Asp the Wyvern, Sean Connelly, Imad Khwaja, Space Cruiser, Rainer Wilmers, subjectnull, Alps Aficionado, Willian Hasse, Fred von Graf, Artur Olbinski, Johann-Peter Hartmann, WelcomeToTheClub, Willem Michiel, Michael Levine, Iucharbius , Spiking Neurons AB, K, biorpg, John Villwock, Pyrater, Greatston Gnanesh, Mano Prime, Junyu Yang, Stephen Murray, John Detwiler, Luke Pendergrass, terasurfer , Pieter, zynix , Edmond Seymore, theTransient, Nathan LeClaire, vamX, Kevin Schuppel, Preetika Verma, ya boyyy, Alex , SuperWojo, Ghost , Joseph William Delisle, Matthew Berman, Talal Aujan, chris gileta, Illia Dulskyi.
108
+
109
+ Thank you to all my generous patrons and donaters!
110
+
111
+ <!-- footer end -->
112
+
113
+ # Original model card: Kaio Ken's SuperHOT 8K
114
+
115
+
116
+ ### SuperHOT Prototype 2 w/ 8K Context
117
+
118
+ This is a second prototype of SuperHOT, a NSFW focused LoRA, this time 7B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
119
+
120
+ #### Looking for Merged & Quantized Models?
121
+ Make some please :)
122
+
123
+ #### Using the monkey-patch?
124
+ You will **NEED** to **apply the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
125
+
126
+ The monkeypatch is only necessary if you are using a front-end/back-end that does not already support scaling and said front-end/back-end is Python-based (i.e. Huggingface Transformers). To apply the patch, you will need to copy the `llama_rope_scaled_monkey_patch.py` into your working directory and call the exported function `replace_llama_rope_with_scaled_rope` at the very start of your Python program. It will modify the Transformers library's implementation of RoPE to properly apply the scaling factor.
127
+
128
+ #### Using Oobabooga with Exllama?
129
+ Switch your loader to `exllama` or `exllama_hf` Add the arguments `max_seq_len 8192` and `compress_pos_emb 4`. **While the model may work well with `compress_pos_emb 2`, it was trained on 4, so that is what I advocate for you to use**
130
+
131
+ Example in the command-line:
132
+ - `python server.py --max_seq_len 8192 --compress_pos_emb 4 --loader exllama_hf`
133
+
134
+ In the UI, you will see the loader option in the `Models` tab. Once you select either `exllama` or `exllama_hf`, the `max_seq_len` and `compress_pos_emb` settings will appear.
135
+
136
+ #### Training Details
137
+ I trained the LoRA with the following configuration:
138
+ - 1200 samples (~400 samples over 2048 sequence length)
139
+ - learning rate of 3e-4
140
+ - 3 epochs
141
+ - The exported modules are:
142
+ - q_proj
143
+ - k_proj
144
+ - v_proj
145
+ - o_proj
146
+ - no bias
147
+ - Rank = 4
148
+ - Alpha = 8
149
+ - no dropout
150
+ - weight decay of 0.1
151
+ - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
152
+ - Trained on 4-bit base model
153
+ - Cutoff length: 4096
154
+
155
+ # Original model card: Allen AI's Tulu 7B
156
+
157
+
158
+ <!-- header start -->
159
+ <div style="width: 100%;">
160
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
161
+ </div>
162
+ <div style="display: flex; justify-content: space-between; width: 100%;">
163
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
164
+ <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
165
+ </div>
166
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
167
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
168
+ </div>
169
+ </div>
170
+ <!-- header end -->
171
+
172
+ # Allen AI's Tulu 7B fp16
173
+
174
+ These files are pytorch format fp16 model files for [Allen AI's Tulu 7B](https://huggingface.co/allenai/tulu-7b).
175
+
176
+ It is the result of merging and/or converting the source repository to float16.
177
+
178
+ ## Repositories available
179
+
180
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/tulu-7B-fp16)
181
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/tulu-7B-GGML)
182
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/tulu-7B-fp16)
183
+
184
+ ## Prompt template
185
+
186
+ The following template should be used:
187
+
188
+ ```
189
+ <|user|>
190
+ prompt goes here
191
+ <|assistant|>
192
+
193
+ ```
194
+
195
+ **Note**: There should be a newline after `<|assistant|>`. This appears to be very important for getting this model to respond correctly.
196
+
197
+ In other words, the prompt is:
198
+
199
+ ```
200
+ <|user|>\nprompt goes here\n<|assistant|>\n
201
+ ```
202
+
203
+ <!-- footer start -->
204
+ ## Discord
205
+
206
+ For further support, and discussions on these models and AI in general, join us at:
207
+
208
+ [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
209
+
210
+ ## Thanks, and how to contribute.
211
+
212
+ Thanks to the [chirper.ai](https://chirper.ai) team!
213
+
214
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
215
+
216
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
217
+
218
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
219
+
220
+ * Patreon: https://patreon.com/TheBlokeAI
221
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
222
+
223
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
224
+
225
+ **Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
226
+
227
+ Thank you to all my generous patrons and donaters!
228
+
229
+ <!-- footer end -->
230
+
231
+ # Original model card: Allen AI's Tulu 7B
232
+
233
+
234
+ # Tulu 7B
235
+
236
+ This model is a 7B LLaMa model finetuned on a mixture of instruction datasets (FLAN V2, CoT, Dolly, Open Assistant 1, GPT4-Alpaca, Code-Alpaca, and ShareGPT).
237
+ *Please note this is a model diff - see below for usage instructions*.
238
+
239
+ This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
240
+ The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
241
+
242
+ This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
243
+
244
+ ## Usage
245
+
246
+ We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
247
+ [https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
248
+
249
+ Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
250
+ and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
251
+
252
+ Then, run:
253
+ ```bash
254
+ python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
255
+ ```
256
+
257
+ And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
258
+
259
+ ## Input Format
260
+
261
+ The model is trained to use the following format (note the newlines):
262
+ ```
263
+ <|user|>
264
+ Your message here!
265
+ <|assistant|>
266
+ ```
267
+
268
+ For best results, format all inputs in this manner.
269
+
270
+ ## Performance
271
+
272
+ Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
273
+
274
+ | MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
275
+ |:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
276
+ | 44.5 | 47.0 | 6.0 | 27.0 | 38.1 | 39.2 | 45.7 | 7.7 | 17.5 | 27.8 | 48.3 | 33.1 |
277
+
278
+ If you use this model, please cite our work, the llama paper, and the original datasets:
279
+
280
+ ```
281
+ @misc{wang2023far,
282
+ title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
283
+ author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
284
+ year={2023},
285
+ eprint={2306.04751},
286
+ archivePrefix={arXiv},
287
+ primaryClass={cs.CL}
288
+ }
289
+ ```
290
+
291
+ ```
292
+ @misc{touvron2023llama,
293
+ title={LLaMA: Open and Efficient Foundation Language Models},
294
+ author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
295
+ year={2023},
296
+ eprint={2302.13971},
297
+ archivePrefix={arXiv},
298
+ primaryClass={cs.CL}
299
+ }
300
+ ```
301
+
302
+ ```
303
+ @misc{dolly,
304
+ author = {Databricks},
305
+ title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
306
+ year = {2023},
307
+ publisher = {GitHub},
308
+ journal = {GitHub repository},
309
+ howpublished = {Blog post},
310
+ url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
311
+ }
312
+ ```
313
+
314
+ ```
315
+ @article{longpre2023flan,
316
+ title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
317
+ author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
318
+ journal={arXiv preprint arXiv:2301.13688},
319
+ year={2023}
320
+ }
321
+ ```
322
+
323
+ ```
324
+ @misc{köpf2023openassistant,
325
+ title={OpenAssistant Conversations -- Democratizing Large Language Model Alignment},
326
+ author={Andreas Köpf and Yannic Kilcher and Dimitri von Rütte and Sotiris Anagnostidis and Zhi-Rui Tam and Keith Stevens and Abdullah Barhoum and Nguyen Minh Duc and Oliver Stanley and Richárd Nagyfi and Shahul ES and Sameer Suri and David Glushkov and Arnav Dantuluri and Andrew Maguire and Christoph Schuhmann and Huu Nguyen and Alexander Mattick},
327
+ year={2023},
328
+ eprint={2304.07327},
329
+ archivePrefix={arXiv},
330
+ primaryClass={cs.CL}
331
+ }
332
+ ```
333
+
334
+ ```
335
+ @article{peng2023instruction,
336
+ title={Instruction Tuning with GPT-4},
337
+ author={Peng, Baolin and Li, Chunyuan and He, Pengcheng and Galley, Michel and Gao, Jianfeng},
338
+ journal={arXiv preprint arXiv:2304.03277},
339
+ year={2023}
340
+ }
341
+ ```
342
+
343
+ ```
344
+ @misc{codealpaca,
345
+ author = {Sahil Chaudhary},
346
+ title = {Code Alpaca: An Instruction-following LLaMA model for code generation},
347
+ year = {2023},
348
+ publisher = {GitHub},
349
+ journal = {GitHub repository},
350
+ howpublished = {\url{https://github.com/sahil280114/codealpaca}},
351
+ }
352
+ ```