TheBloke commited on
Commit
89d35b1
·
1 Parent(s): 2a4d633

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +266 -0
README.md ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split
4
+ inference: false
5
+ language:
6
+ - en
7
+ license: llama2
8
+ model_creator: Eric Hartford
9
+ model_link: https://huggingface.co/ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b
10
+ model_name: WizardLM 1.0 Uncensored CodeLlama 34B
11
+ model_type: llama
12
+ quantized_by: TheBloke
13
+ ---
14
+
15
+ <!-- header start -->
16
+ <!-- 200823 -->
17
+ <div style="width: auto; margin-left: auto; margin-right: auto">
18
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </div>
20
+ <div style="display: flex; justify-content: space-between; width: 100%;">
21
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
22
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
23
+ </div>
24
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
26
+ </div>
27
+ </div>
28
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
29
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
30
+ <!-- header end -->
31
+
32
+ # WizardLM 1.0 Uncensored CodeLlama 34B - GPTQ
33
+ - Model creator: [Eric Hartford](https://huggingface.co/ehartford)
34
+ - Original model: [WizardLM 1.0 Uncensored CodeLlama 34B](https://huggingface.co/ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b)
35
+
36
+ <!-- description start -->
37
+ ## Description
38
+
39
+ This repo contains GPTQ model files for [Eric Hartford's WizardLM 1.0 Uncensored CodeLlama 34B](https://huggingface.co/ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b).
40
+
41
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
42
+
43
+ <!-- description end -->
44
+ <!-- repositories-available start -->
45
+ ## Repositories available
46
+
47
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ)
48
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GGUF)
49
+ * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b)
50
+ <!-- repositories-available end -->
51
+
52
+ <!-- prompt-template start -->
53
+ ## Prompt template: Vicuna-Short
54
+
55
+ ```
56
+ You are a helpful AI assistant.
57
+
58
+ USER: {prompt}
59
+ ASSISTANT:
60
+
61
+ ```
62
+
63
+ <!-- prompt-template end -->
64
+
65
+ <!-- README_GPTQ.md-provided-files start -->
66
+ ## Provided files and GPTQ parameters
67
+
68
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
69
+
70
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
71
+
72
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
73
+
74
+ <details>
75
+ <summary>Explanation of GPTQ parameters</summary>
76
+
77
+ - Bits: The bit size of the quantised model.
78
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
79
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
80
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
81
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
82
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
83
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
84
+
85
+ </details>
86
+
87
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
88
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
89
+ | [main](https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 17.69 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
90
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 20.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
91
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 18.98 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
92
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 18.33 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
93
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.54 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
94
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 14.14 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
95
+
96
+ <!-- README_GPTQ.md-provided-files end -->
97
+
98
+ <!-- README_GPTQ.md-download-from-branches start -->
99
+ ## How to download from branches
100
+
101
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ:gptq-4bit-32g-actorder_True`
102
+ - With Git, you can clone a branch with:
103
+ ```
104
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ
105
+ ```
106
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
107
+ <!-- README_GPTQ.md-download-from-branches end -->
108
+ <!-- README_GPTQ.md-text-generation-webui start -->
109
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
110
+
111
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
112
+
113
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
114
+
115
+ 1. Click the **Model tab**.
116
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ`.
117
+ - To download from a specific branch, enter for example `TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ:gptq-4bit-32g-actorder_True`
118
+ - see Provided Files above for the list of branches for each option.
119
+ 3. Click **Download**.
120
+ 4. The model will start downloading. Once it's finished it will say "Done".
121
+ 5. In the top left, click the refresh icon next to **Model**.
122
+ 6. In the **Model** dropdown, choose the model you just downloaded: `WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ`
123
+ 7. The model will automatically load, and is now ready for use!
124
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
125
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
126
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
127
+ <!-- README_GPTQ.md-text-generation-webui end -->
128
+
129
+ <!-- README_GPTQ.md-use-from-python start -->
130
+ ## How to use this GPTQ model from Python code
131
+
132
+ ### Install the necessary packages
133
+
134
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
135
+
136
+ ```shell
137
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
138
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
139
+ ```
140
+
141
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
142
+
143
+ ```shell
144
+ pip3 uninstall -y auto-gptq
145
+ git clone https://github.com/PanQiWei/AutoGPTQ
146
+ cd AutoGPTQ
147
+ pip3 install .
148
+ ```
149
+
150
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
151
+
152
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
153
+ ```shell
154
+ pip3 uninstall -y transformers
155
+ pip3 install git+https://github.com/huggingface/transformers.git
156
+ ```
157
+
158
+ ### You can then use the following code
159
+
160
+ ```python
161
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
162
+
163
+ model_name_or_path = "TheBloke/WizardLM-1.0-Uncensored-CodeLlama-34B-GPTQ"
164
+ # To use a different branch, change revision
165
+ # For example: revision="gptq-4bit-32g-actorder_True"
166
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
167
+ torch_dtype=torch.float16,
168
+ device_map="auto",
169
+ revision="main")
170
+
171
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
172
+
173
+ prompt = "Tell me about AI"
174
+ prompt_template=f'''You are a helpful AI assistant.
175
+
176
+ USER: {prompt}
177
+ ASSISTANT:
178
+
179
+ '''
180
+
181
+ print("\n\n*** Generate:")
182
+
183
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
184
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
185
+ print(tokenizer.decode(output[0]))
186
+
187
+ # Inference can also be done using transformers' pipeline
188
+
189
+ print("*** Pipeline:")
190
+ pipe = pipeline(
191
+ "text-generation",
192
+ model=model,
193
+ tokenizer=tokenizer,
194
+ max_new_tokens=512,
195
+ temperature=0.7,
196
+ top_p=0.95,
197
+ repetition_penalty=1.15
198
+ )
199
+
200
+ print(pipe(prompt_template)[0]['generated_text'])
201
+ ```
202
+ <!-- README_GPTQ.md-use-from-python end -->
203
+
204
+ <!-- README_GPTQ.md-compatibility start -->
205
+ ## Compatibility
206
+
207
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
208
+
209
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
210
+
211
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
212
+ <!-- README_GPTQ.md-compatibility end -->
213
+
214
+ <!-- footer start -->
215
+ <!-- 200823 -->
216
+ ## Discord
217
+
218
+ For further support, and discussions on these models and AI in general, join us at:
219
+
220
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
221
+
222
+ ## Thanks, and how to contribute.
223
+
224
+ Thanks to the [chirper.ai](https://chirper.ai) team!
225
+
226
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
227
+
228
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
229
+
230
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
231
+
232
+ * Patreon: https://patreon.com/TheBlokeAI
233
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
234
+
235
+ **Special thanks to**: Aemon Algiz.
236
+
237
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
238
+
239
+
240
+ Thank you to all my generous patrons and donaters!
241
+
242
+ And thank you again to a16z for their generous grant.
243
+
244
+ <!-- footer end -->
245
+
246
+ # Original model card: Eric Hartford's WizardLM 1.0 Uncensored CodeLlama 34B
247
+
248
+
249
+ This model is trained on top of CodeLlama-34b, which gives it some very good coding abilities.
250
+
251
+ This is a retraining of https://huggingface.co/WizardLM/WizardLM-13B-V1.0 with a filtered dataset, intended to reduce refusals, avoidance, and bias.
252
+
253
+ Note that LLaMA itself has inherent ethical beliefs, so there's no such thing as a "truly uncensored" model. But this model will be more compliant than WizardLM/WizardLM-13B-V1.0.
254
+
255
+ Shout out to the open source AI/ML community, and everyone who helped me out.
256
+
257
+ Note: An uncensored model has no guardrails. You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car. Publishing anything this model generates is the same as publishing it yourself. You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
258
+
259
+ Like WizardLM/WizardLM-13B-V1.0, this model is trained with Vicuna-1.1 style prompts.
260
+
261
+ ```
262
+ You are a helpful AI assistant.
263
+
264
+ USER: <prompt>
265
+ ASSISTANT:
266
+ ```