TheBloke commited on
Commit
2c2bcbc
1 Parent(s): c617c53

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -42
README.md CHANGED
@@ -31,18 +31,24 @@ tags:
31
  - Model creator: [Zaraki Quem Parte](https://huggingface.co/zarakiquemparte)
32
  - Original model: [Zarablend MX L2 7B](https://huggingface.co/zarakiquemparte/zarablend-mx-l2-7b)
33
 
 
34
  ## Description
35
 
36
  This repo contains GPTQ model files for [Zaraki Quem Parte's Zarablend MX L2 7B](https://huggingface.co/zarakiquemparte/zarablend-mx-l2-7b).
37
 
38
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
39
 
 
 
40
  ## Repositories available
41
 
42
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ)
43
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GGML)
 
44
  * [Zaraki Quem Parte's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/zarakiquemparte/zarablend-mx-l2-7b)
 
45
 
 
46
  ## Prompt template: Alpaca
47
 
48
  ```
@@ -52,22 +58,26 @@ Below is an instruction that describes a task. Write a response that appropriate
52
  {prompt}
53
 
54
  ### Response:
 
55
  ```
56
 
 
 
 
57
  ## Provided files and GPTQ parameters
58
 
59
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
60
 
61
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
62
 
63
- All GPTQ files are made with AutoGPTQ.
64
 
65
  <details>
66
  <summary>Explanation of GPTQ parameters</summary>
67
 
68
  - Bits: The bit size of the quantised model.
69
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
70
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
71
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
72
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
73
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -84,6 +94,9 @@ All GPTQ files are made with AutoGPTQ.
84
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
85
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
86
 
 
 
 
87
  ## How to download from branches
88
 
89
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Zarablend-MX-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -92,73 +105,72 @@ All GPTQ files are made with AutoGPTQ.
92
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ
93
  ```
94
  - In Python Transformers code, the branch is the `revision` parameter; see below.
95
-
 
96
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
97
 
98
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
99
 
100
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
101
 
102
  1. Click the **Model tab**.
103
  2. Under **Download custom model or LoRA**, enter `TheBloke/Zarablend-MX-L2-7B-GPTQ`.
104
  - To download from a specific branch, enter for example `TheBloke/Zarablend-MX-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
105
  - see Provided Files above for the list of branches for each option.
106
  3. Click **Download**.
107
- 4. The model will start downloading. Once it's finished it will say "Done"
108
  5. In the top left, click the refresh icon next to **Model**.
109
  6. In the **Model** dropdown, choose the model you just downloaded: `Zarablend-MX-L2-7B-GPTQ`
110
  7. The model will automatically load, and is now ready for use!
111
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
112
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
113
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
114
 
 
115
  ## How to use this GPTQ model from Python code
116
 
117
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
118
 
119
- ```
120
- pip3 install auto-gptq
121
- ```
122
 
123
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
124
  ```
 
 
 
 
125
  pip3 uninstall -y auto-gptq
126
  git clone https://github.com/PanQiWei/AutoGPTQ
127
  cd AutoGPTQ
128
  pip3 install .
129
  ```
130
 
131
- Then try the following example code:
 
 
 
 
 
 
 
 
132
 
133
  ```python
134
- from transformers import AutoTokenizer, pipeline, logging
135
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
136
 
137
  model_name_or_path = "TheBloke/Zarablend-MX-L2-7B-GPTQ"
138
-
139
- use_triton = False
 
 
 
 
140
 
141
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
142
 
143
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
144
- use_safetensors=True,
145
- trust_remote_code=False,
146
- device="cuda:0",
147
- use_triton=use_triton,
148
- quantize_config=None)
149
-
150
- """
151
- # To download from a specific branch, use the revision parameter, as in this example:
152
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
153
-
154
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
155
- revision="gptq-4bit-32g-actorder_True",
156
- use_safetensors=True,
157
- trust_remote_code=False,
158
- device="cuda:0",
159
- quantize_config=None)
160
- """
161
-
162
  prompt = "Tell me about AI"
163
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
164
 
@@ -166,6 +178,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
166
  {prompt}
167
 
168
  ### Response:
 
169
  '''
170
 
171
  print("\n\n*** Generate:")
@@ -176,9 +189,6 @@ print(tokenizer.decode(output[0]))
176
 
177
  # Inference can also be done using transformers' pipeline
178
 
179
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
180
- logging.set_verbosity(logging.CRITICAL)
181
-
182
  print("*** Pipeline:")
183
  pipe = pipeline(
184
  "text-generation",
@@ -192,12 +202,17 @@ pipe = pipeline(
192
 
193
  print(pipe(prompt_template)[0]['generated_text'])
194
  ```
 
195
 
 
196
  ## Compatibility
197
 
198
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
199
 
200
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
201
 
202
  <!-- footer start -->
203
  <!-- 200823 -->
@@ -222,7 +237,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
222
 
223
  **Special thanks to**: Aemon Algiz.
224
 
225
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
226
 
227
 
228
  Thank you to all my generous patrons and donaters!
@@ -240,6 +255,10 @@ This merge of models(hermes and airoboros) was done with this [script](https://g
240
 
241
  This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py)
242
 
 
 
 
 
243
  Merge illustration:
244
 
245
  ![illustration](zarablend-mx-merge-illustration.png)
 
31
  - Model creator: [Zaraki Quem Parte](https://huggingface.co/zarakiquemparte)
32
  - Original model: [Zarablend MX L2 7B](https://huggingface.co/zarakiquemparte/zarablend-mx-l2-7b)
33
 
34
+ <!-- description start -->
35
  ## Description
36
 
37
  This repo contains GPTQ model files for [Zaraki Quem Parte's Zarablend MX L2 7B](https://huggingface.co/zarakiquemparte/zarablend-mx-l2-7b).
38
 
39
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
40
 
41
+ <!-- description end -->
42
+ <!-- repositories-available start -->
43
  ## Repositories available
44
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ)
46
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GGUF)
47
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GGML)
48
  * [Zaraki Quem Parte's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/zarakiquemparte/zarablend-mx-l2-7b)
49
+ <!-- repositories-available end -->
50
 
51
+ <!-- prompt-template start -->
52
  ## Prompt template: Alpaca
53
 
54
  ```
 
58
  {prompt}
59
 
60
  ### Response:
61
+
62
  ```
63
 
64
+ <!-- prompt-template end -->
65
+
66
+ <!-- README_GPTQ.md-provided-files start -->
67
  ## Provided files and GPTQ parameters
68
 
69
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
70
 
71
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
72
 
73
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
74
 
75
  <details>
76
  <summary>Explanation of GPTQ parameters</summary>
77
 
78
  - Bits: The bit size of the quantised model.
79
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
80
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
81
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
82
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
83
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
94
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
95
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
96
 
97
+ <!-- README_GPTQ.md-provided-files end -->
98
+
99
+ <!-- README_GPTQ.md-download-from-branches start -->
100
  ## How to download from branches
101
 
102
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Zarablend-MX-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
 
105
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ
106
  ```
107
  - In Python Transformers code, the branch is the `revision` parameter; see below.
108
+ <!-- README_GPTQ.md-download-from-branches end -->
109
+ <!-- README_GPTQ.md-text-generation-webui start -->
110
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
111
 
112
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
113
 
114
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
115
 
116
  1. Click the **Model tab**.
117
  2. Under **Download custom model or LoRA**, enter `TheBloke/Zarablend-MX-L2-7B-GPTQ`.
118
  - To download from a specific branch, enter for example `TheBloke/Zarablend-MX-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
119
  - see Provided Files above for the list of branches for each option.
120
  3. Click **Download**.
121
+ 4. The model will start downloading. Once it's finished it will say "Done".
122
  5. In the top left, click the refresh icon next to **Model**.
123
  6. In the **Model** dropdown, choose the model you just downloaded: `Zarablend-MX-L2-7B-GPTQ`
124
  7. The model will automatically load, and is now ready for use!
125
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
126
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
127
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
128
+ <!-- README_GPTQ.md-text-generation-webui end -->
129
 
130
+ <!-- README_GPTQ.md-use-from-python start -->
131
  ## How to use this GPTQ model from Python code
132
 
133
+ ### Install the necessary packages
134
 
135
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
136
 
137
+ ```shell
138
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
139
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
140
  ```
141
+
142
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
143
+
144
+ ```shell
145
  pip3 uninstall -y auto-gptq
146
  git clone https://github.com/PanQiWei/AutoGPTQ
147
  cd AutoGPTQ
148
  pip3 install .
149
  ```
150
 
151
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
152
+
153
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
154
+ ```shell
155
+ pip3 uninstall -y transformers
156
+ pip3 install git+https://github.com/huggingface/transformers.git
157
+ ```
158
+
159
+ ### You can then use the following code
160
 
161
  ```python
162
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
163
 
164
  model_name_or_path = "TheBloke/Zarablend-MX-L2-7B-GPTQ"
165
+ # To use a different branch, change revision
166
+ # For example: revision="gptq-4bit-32g-actorder_True"
167
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
168
+ torch_dtype=torch.float16,
169
+ device_map="auto",
170
+ revision="main")
171
 
172
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  prompt = "Tell me about AI"
175
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
176
 
 
178
  {prompt}
179
 
180
  ### Response:
181
+
182
  '''
183
 
184
  print("\n\n*** Generate:")
 
189
 
190
  # Inference can also be done using transformers' pipeline
191
 
 
 
 
192
  print("*** Pipeline:")
193
  pipe = pipeline(
194
  "text-generation",
 
202
 
203
  print(pipe(prompt_template)[0]['generated_text'])
204
  ```
205
+ <!-- README_GPTQ.md-use-from-python end -->
206
 
207
+ <!-- README_GPTQ.md-compatibility start -->
208
  ## Compatibility
209
 
210
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
211
 
212
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
213
+
214
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
215
+ <!-- README_GPTQ.md-compatibility end -->
216
 
217
  <!-- footer start -->
218
  <!-- 200823 -->
 
237
 
238
  **Special thanks to**: Aemon Algiz.
239
 
240
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
241
 
242
 
243
  Thank you to all my generous patrons and donaters!
 
255
 
256
  This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py)
257
 
258
+ Quantized Model by @TheBloke:
259
+ - [GGML](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GGML)
260
+ - [GPTQ](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ)
261
+
262
  Merge illustration:
263
 
264
  ![illustration](zarablend-mx-merge-illustration.png)