TheBloke commited on
Commit
9c7643d
1 Parent(s): 0429c09

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -53,7 +53,7 @@ This repo contains GGUF format model files for [Austism's Chronos Wizardlm Uc Sc
53
  <!-- README_GGUF.md-about-gguf start -->
54
  ### About GGUF
55
 
56
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
57
 
58
  Here is an incomplate list of clients and libraries that are known to support GGUF:
59
 
@@ -96,7 +96,7 @@ Below is an instruction that describes a task. Write a response that appropriate
96
  <!-- compatibility_gguf start -->
97
  ## Compatibility
98
 
99
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
100
 
101
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
102
 
@@ -160,7 +160,7 @@ Then click Download.
160
  I recommend using the `huggingface-hub` Python library:
161
 
162
  ```shell
163
- pip3 install huggingface-hub>=0.17.1
164
  ```
165
 
166
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -189,25 +189,25 @@ pip3 install hf_transfer
189
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
190
 
191
  ```shell
192
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/chronos-wizardlm-uc-scot-st-13B-GGUF chronos-wizardlm-uc-scot-st-13B.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
193
  ```
194
 
195
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
196
  </details>
197
  <!-- README_GGUF.md-how-to-download end -->
198
 
199
  <!-- README_GGUF.md-how-to-run start -->
200
  ## Example `llama.cpp` command
201
 
202
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
203
 
204
  ```shell
205
- ./main -ngl 32 -m chronos-wizardlm-uc-scot-st-13B.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
206
  ```
207
 
208
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
209
 
210
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
211
 
212
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
213
 
@@ -221,22 +221,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
221
 
222
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
223
 
224
- ### How to load this model from Python using ctransformers
225
 
226
  #### First install the package
227
 
228
- ```bash
 
 
229
  # Base ctransformers with no GPU acceleration
230
- pip install ctransformers>=0.2.24
231
  # Or with CUDA GPU acceleration
232
- pip install ctransformers[cuda]>=0.2.24
233
- # Or with ROCm GPU acceleration
234
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
235
- # Or with Metal GPU acceleration for macOS systems
236
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
237
  ```
238
 
239
- #### Simple example code to load one of these GGUF models
240
 
241
  ```python
242
  from ctransformers import AutoModelForCausalLM
@@ -249,7 +251,7 @@ print(llm("AI is going to"))
249
 
250
  ## How to use with LangChain
251
 
252
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
253
 
254
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
255
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
53
  <!-- README_GGUF.md-about-gguf start -->
54
  ### About GGUF
55
 
56
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
57
 
58
  Here is an incomplate list of clients and libraries that are known to support GGUF:
59
 
 
96
  <!-- compatibility_gguf start -->
97
  ## Compatibility
98
 
99
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
100
 
101
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
102
 
 
160
  I recommend using the `huggingface-hub` Python library:
161
 
162
  ```shell
163
+ pip3 install huggingface-hub
164
  ```
165
 
166
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
189
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
190
 
191
  ```shell
192
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/chronos-wizardlm-uc-scot-st-13B-GGUF chronos-wizardlm-uc-scot-st-13B.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
193
  ```
194
 
195
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
196
  </details>
197
  <!-- README_GGUF.md-how-to-download end -->
198
 
199
  <!-- README_GGUF.md-how-to-run start -->
200
  ## Example `llama.cpp` command
201
 
202
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
203
 
204
  ```shell
205
+ ./main -ngl 32 -m chronos-wizardlm-uc-scot-st-13B.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
206
  ```
207
 
208
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
209
 
210
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
211
 
212
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
213
 
 
221
 
222
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
223
 
224
+ ### How to load this model in Python code, using ctransformers
225
 
226
  #### First install the package
227
 
228
+ Run one of the following commands, according to your system:
229
+
230
+ ```shell
231
  # Base ctransformers with no GPU acceleration
232
+ pip install ctransformers
233
  # Or with CUDA GPU acceleration
234
+ pip install ctransformers[cuda]
235
+ # Or with AMD ROCm GPU acceleration (Linux only)
236
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
237
+ # Or with Metal GPU acceleration for macOS systems only
238
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
239
  ```
240
 
241
+ #### Simple ctransformers example code
242
 
243
  ```python
244
  from ctransformers import AutoModelForCausalLM
 
251
 
252
  ## How to use with LangChain
253
 
254
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
255
 
256
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
257
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)