TheBloke commited on
Commit
d40f3b6
1 Parent(s): 3ddae07

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +539 -0
README.md ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: budecosystem/genz-13b-v2
3
+ inference: false
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ license: llama2
8
+ model_creator: Bud
9
+ model_name: GenZ 13B v2
10
+ model_type: llama
11
+ pipeline_tag: text-generation
12
+ prompt_template: '### User:
13
+
14
+ {prompt}
15
+
16
+
17
+ ### Assistant:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ ---
22
+
23
+ <!-- header start -->
24
+ <!-- 200823 -->
25
+ <div style="width: auto; margin-left: auto; margin-right: auto">
26
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
27
+ </div>
28
+ <div style="display: flex; justify-content: space-between; width: 100%;">
29
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
31
+ </div>
32
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
33
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
34
+ </div>
35
+ </div>
36
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
37
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
38
+ <!-- header end -->
39
+
40
+ # GenZ 13B v2 - GGUF
41
+ - Model creator: [Bud](https://huggingface.co/budecosystem)
42
+ - Original model: [GenZ 13B v2](https://huggingface.co/budecosystem/genz-13b-v2)
43
+
44
+ <!-- description start -->
45
+ ## Description
46
+
47
+ This repo contains GGUF format model files for [Bud's GenZ 13B v2](https://huggingface.co/budecosystem/genz-13b-v2).
48
+
49
+ <!-- description end -->
50
+ <!-- README_GGUF.md-about-gguf start -->
51
+ ### About GGUF
52
+
53
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
54
+
55
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
56
+
57
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
58
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
59
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
60
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
61
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
62
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
63
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
64
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
65
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
66
+
67
+ <!-- README_GGUF.md-about-gguf end -->
68
+ <!-- repositories-available start -->
69
+ ## Repositories available
70
+
71
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/genz-13B-v2-AWQ)
72
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/genz-13B-v2-GPTQ)
73
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/genz-13B-v2-GGUF)
74
+ * [Bud's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/budecosystem/genz-13b-v2)
75
+ <!-- repositories-available end -->
76
+
77
+ <!-- prompt-template start -->
78
+ ## Prompt template: User-Assistant-Newlines
79
+
80
+ ```
81
+ ### User:
82
+ {prompt}
83
+
84
+ ### Assistant:
85
+
86
+ ```
87
+
88
+ <!-- prompt-template end -->
89
+
90
+
91
+ <!-- compatibility_gguf start -->
92
+ ## Compatibility
93
+
94
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
95
+
96
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
97
+
98
+ ## Explanation of quantisation methods
99
+ <details>
100
+ <summary>Click to see details</summary>
101
+
102
+ The new methods available are:
103
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
104
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
105
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
106
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
107
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
108
+
109
+ Refer to the Provided Files table below to see what files use which methods, and how.
110
+ </details>
111
+ <!-- compatibility_gguf end -->
112
+
113
+ <!-- README_GGUF.md-provided-files start -->
114
+ ## Provided files
115
+
116
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
117
+ | ---- | ---- | ---- | ---- | ---- | ----- |
118
+ | [genz-13b-v2.Q2_K.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
119
+ | [genz-13b-v2.Q3_K_S.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
120
+ | [genz-13b-v2.Q3_K_M.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
121
+ | [genz-13b-v2.Q3_K_L.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
122
+ | [genz-13b-v2.Q4_0.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
123
+ | [genz-13b-v2.Q4_K_S.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
124
+ | [genz-13b-v2.Q4_K_M.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
125
+ | [genz-13b-v2.Q5_0.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
126
+ | [genz-13b-v2.Q5_K_S.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
127
+ | [genz-13b-v2.Q5_K_M.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
128
+ | [genz-13b-v2.Q6_K.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
129
+ | [genz-13b-v2.Q8_0.gguf](https://huggingface.co/TheBloke/genz-13B-v2-GGUF/blob/main/genz-13b-v2.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
130
+
131
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
132
+
133
+
134
+
135
+ <!-- README_GGUF.md-provided-files end -->
136
+
137
+ <!-- README_GGUF.md-how-to-download start -->
138
+ ## How to download GGUF files
139
+
140
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
141
+
142
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
143
+ - LM Studio
144
+ - LoLLMS Web UI
145
+ - Faraday.dev
146
+
147
+ ### In `text-generation-webui`
148
+
149
+ Under Download Model, you can enter the model repo: TheBloke/genz-13B-v2-GGUF and below it, a specific filename to download, such as: genz-13b-v2.Q4_K_M.gguf.
150
+
151
+ Then click Download.
152
+
153
+ ### On the command line, including multiple files at once
154
+
155
+ I recommend using the `huggingface-hub` Python library:
156
+
157
+ ```shell
158
+ pip3 install huggingface-hub
159
+ ```
160
+
161
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
162
+
163
+ ```shell
164
+ huggingface-cli download TheBloke/genz-13B-v2-GGUF genz-13b-v2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
165
+ ```
166
+
167
+ <details>
168
+ <summary>More advanced huggingface-cli download usage</summary>
169
+
170
+ You can also download multiple files at once with a pattern:
171
+
172
+ ```shell
173
+ huggingface-cli download TheBloke/genz-13B-v2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
174
+ ```
175
+
176
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
177
+
178
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
179
+
180
+ ```shell
181
+ pip3 install hf_transfer
182
+ ```
183
+
184
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
185
+
186
+ ```shell
187
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/genz-13B-v2-GGUF genz-13b-v2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
188
+ ```
189
+
190
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
191
+ </details>
192
+ <!-- README_GGUF.md-how-to-download end -->
193
+
194
+ <!-- README_GGUF.md-how-to-run start -->
195
+ ## Example `llama.cpp` command
196
+
197
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
198
+
199
+ ```shell
200
+ ./main -ngl 32 -m genz-13b-v2.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### User:\n{prompt}\n\n### Assistant:"
201
+ ```
202
+
203
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
204
+
205
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
206
+
207
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
208
+
209
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
210
+
211
+ ## How to run in `text-generation-webui`
212
+
213
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
214
+
215
+ ## How to run from Python code
216
+
217
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
218
+
219
+ ### How to load this model in Python code, using ctransformers
220
+
221
+ #### First install the package
222
+
223
+ Run one of the following commands, according to your system:
224
+
225
+ ```shell
226
+ # Base ctransformers with no GPU acceleration
227
+ pip install ctransformers
228
+ # Or with CUDA GPU acceleration
229
+ pip install ctransformers[cuda]
230
+ # Or with AMD ROCm GPU acceleration (Linux only)
231
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
232
+ # Or with Metal GPU acceleration for macOS systems only
233
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
234
+ ```
235
+
236
+ #### Simple ctransformers example code
237
+
238
+ ```python
239
+ from ctransformers import AutoModelForCausalLM
240
+
241
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
242
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/genz-13B-v2-GGUF", model_file="genz-13b-v2.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
243
+
244
+ print(llm("AI is going to"))
245
+ ```
246
+
247
+ ## How to use with LangChain
248
+
249
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
250
+
251
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
252
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
253
+
254
+ <!-- README_GGUF.md-how-to-run end -->
255
+
256
+ <!-- footer start -->
257
+ <!-- 200823 -->
258
+ ## Discord
259
+
260
+ For further support, and discussions on these models and AI in general, join us at:
261
+
262
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
263
+
264
+ ## Thanks, and how to contribute
265
+
266
+ Thanks to the [chirper.ai](https://chirper.ai) team!
267
+
268
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
269
+
270
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
271
+
272
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
273
+
274
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
275
+
276
+ * Patreon: https://patreon.com/TheBlokeAI
277
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
278
+
279
+ **Special thanks to**: Aemon Algiz.
280
+
281
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
282
+
283
+
284
+ Thank you to all my generous patrons and donaters!
285
+
286
+ And thank you again to a16z for their generous grant.
287
+
288
+ <!-- footer end -->
289
+
290
+ <!-- original-model-card start -->
291
+ # Original model card: Bud's GenZ 13B v2
292
+
293
+ ---
294
+
295
+ <div align="center"><h1 align="center">~ GenZ ~</h1><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/genz-logo.png" width=150></div>
296
+
297
+
298
+ <p align="center"><i>Democratizing access to LLMs for the open-source community.<br>Let's advance AI, together. </i></p>
299
+
300
+ ---
301
+
302
+
303
+ ## Introduction 🎉
304
+
305
+ Welcome to **GenZ**, an advanced Large Language Model (LLM) fine-tuned on the foundation of Meta's open-source Llama V2 13B parameter model. At Bud Ecosystem, we believe in the power of open-source collaboration to drive the advancement of technology at an accelerated pace. Our vision is to democratize access to fine-tuned LLMs, and to that end, we will be releasing a series of models across different parameter counts (7B, 13B, and 70B) and quantizations (32-bit and 4-bit) for the open-source community to use, enhance, and build upon.
306
+
307
+ <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/MTBench_CompareChart_28July2023.png" width="500"></p>
308
+
309
+ The smaller quantization version of our models makes them more accessible, enabling their use even on personal computers. This opens up a world of possibilities for developers, researchers, and enthusiasts to experiment with these models and contribute to the collective advancement of language model technology.
310
+
311
+ GenZ isn't just a powerful text generator—it's a sophisticated AI assistant, capable of understanding and responding to user prompts with high-quality responses. We've taken the robust capabilities of Llama V2 and fine-tuned them to offer a more user-focused experience. Whether you're seeking informative responses or engaging interactions, GenZ is designed to deliver.
312
+
313
+ And this isn't the end. It's just the beginning of a journey towards creating more advanced, more efficient, and more accessible language models. We invite you to join us on this exciting journey. 🚀
314
+
315
+ ---
316
+
317
+ <h2>Milestone Releases ️🏁</h2>
318
+
319
+ **[27 July 2023]**
320
+ [_GenZ-13B V2 (ggml)_](https://huggingface.co/budecosystem/genz-13b-v2-ggml) : Announcing our GenZ-13B v2 with ggml. This variant of GenZ can run inferencing using only CPU and without the need of GPU. Download the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2-ggml).
321
+
322
+ **[27 July 2023]**
323
+ [_GenZ-13B V2 (4-bit)_](https://huggingface.co/budecosystem/genz-13b-v2-4bit) : Announcing our GenZ-13B v2 with 4-bit quantisation. Enabling inferencing with much lesser GPU memory than the 32-bit variant. Download the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2-4bit).
324
+
325
+ **[26 July 2023]**
326
+ [_GenZ-13B V2_](https://huggingface.co/budecosystem/genz-13b-v2) : We're excited to announce the release of our Genz 13B v2 model, a step forward with improved evaluation results compared to v1. Experience the advancements by downloading the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2).
327
+
328
+ **[20 July 2023]**
329
+ [_GenZ-13B_](https://huggingface.co/budecosystem/genz-13b) : We marked an important milestone with the release of the Genz 13B model. The journey began here, and you can partake in it by downloading the model from [Hugging Face](https://huggingface.co/budecosystem/genz-13b).
330
+
331
+ ---
332
+
333
+
334
+ <img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/screenshot_genz13bv2.png" width="100%">
335
+
336
+ | ![Python](https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/Python.gif) | ![Poem](https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/Poem.gif) | ![Email](https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/Email.gif)
337
+ |:--:|:--:|:--:|
338
+ | *Code Generation* | *Poem Generation* | *Email Generation* |
339
+
340
+ <!--
341
+ <p align="center"><img src="https://raw.githubusercontent.com/adrot-dev/git-test/blob/main/assets/Python.gif" width="33%" alt="Python Code"><img src="https://raw.githubusercontent.com/adrot-dev/git-test/blob/main/assets/Poem.gif" width="33%"><img src="https://raw.githubusercontent.com/adrot-dev/git-test/blob/main/assets/Email.gif" width="33%"></p>
342
+ -->
343
+
344
+
345
+ <h2>Getting Started on Hugging Face 🤗</h2>
346
+
347
+ Getting up and running with our models on Hugging Face is a breeze. Follow these steps:
348
+
349
+ <h3>1️⃣ : Import necessary modules</h3>
350
+
351
+
352
+ Start by importing the necessary modules from the ‘transformers’ library and ‘torch’.
353
+
354
+ ```python
355
+ import torch
356
+ from transformers import AutoTokenizer, AutoModelForCausalLM
357
+ ```
358
+
359
+ <h3>2️⃣ : Load the tokenizer and the model</h3>
360
+
361
+ Next, load up the tokenizer and the model for ‘budecosystem/genz-13b-v2’ from Hugging Face using the ‘from_pretrained’ method.
362
+
363
+ ```python
364
+ tokenizer = AutoTokenizer.from_pretrained("budecosystem/genz-13b-v2", trust_remote_code=True)
365
+ model = AutoModelForCausalLM.from_pretrained("budecosystem/genz-13b-v2", torch_dtype=torch.bfloat16)
366
+ ```
367
+
368
+ <h3>3️⃣ : Generate responses</h3>
369
+
370
+
371
+ Now that you have the model and tokenizer, you're ready to generate responses. Here's how you can do it:
372
+
373
+ ```python
374
+ inputs = tokenizer("The meaning of life is", return_tensors="pt")
375
+ sample = model.generate(**inputs, max_length=128)
376
+ print(tokenizer.decode(sample[0]))
377
+ ```
378
+
379
+ In this example, "The meaning of life is" is the prompt template used for inference. You can replace it with any string you like.
380
+
381
+ Want to interact with the model in a more intuitive way? We have a Gradio interface set up for that. Head over to our GitHub page, clone the repository, and run the ‘generate.py’ script to try it out. Happy experimenting! 😄
382
+
383
+ <h2>Fine-tuning 🎯</h2>
384
+
385
+
386
+ It's time to upgrade the model by fine-tuning the model. You can do this using our provided finetune.py script. Here's an example command:
387
+
388
+ ```bash
389
+ python finetune.py \
390
+ --model_name meta-llama/Llama-2-13b \
391
+ --data_path dataset.json \
392
+ --output_dir output \
393
+ --trust_remote_code \
394
+ --prompt_column instruction \
395
+ --response_column output \
396
+ --pad_token_id 50256
397
+ ```
398
+
399
+ ---
400
+
401
+ <h2 >Bonus: Colab Notebooks 📚 <b><i>(WIP)</i></b></h2>
402
+
403
+
404
+ Looking for an even simpler way to get started with GenZ? We've got you covered. We've prepared a pair of detailed Colab notebooks - one for Inference and one for Fine-tuning. These notebooks come pre-filled with all the information and code you'll need. All you'll have to do is run them!
405
+
406
+ Keep an eye out for these notebooks. They'll be added to the repository soon!
407
+
408
+ ---
409
+
410
+ <h2>Why Use GenZ? 💡</h2>
411
+
412
+
413
+ You might be wondering, "Why should I choose GenZ over a pretrained model?" The answer lies in the extra mile we've gone to fine-tune our models.
414
+
415
+ While pretrained models are undeniably powerful, GenZ brings something extra to the table. We've fine-tuned it with curated datasets, which means it has additional skills and capabilities beyond what a pretrained model can offer. Whether you need it for a simple task or a complex project, GenZ is up for the challenge.
416
+
417
+ What's more, we are committed to continuously enhancing GenZ. We believe in the power of constant learning and improvement. That's why we'll be regularly fine-tuning our models with various curated datasets to make them even better. Our goal is to reach the state of the art and beyond - and we're committed to staying the course until we get there.
418
+
419
+ But don't just take our word for it. We've provided detailed evaluations and performance details in a later section, so you can see the difference for yourself.
420
+
421
+ Choose GenZ and join us on this journey. Together, we can push the boundaries of what's possible with large language models.
422
+
423
+ ---
424
+
425
+ <h2>Model Card for GenZ 13B 📄</h2>
426
+
427
+ Here's a quick overview of everything you need to know about GenZ 13B.
428
+
429
+ <h3>Model Details:</h3>
430
+
431
+
432
+ - Developed by: Bud Ecosystem
433
+ - Base pretrained model type: Llama V2 13B
434
+ - Model Architecture: GenZ 13B, fine-tuned on Llama V2 13B, is an auto-regressive language model that employs an optimized transformer architecture. The fine-tuning process for GenZ 13B leveraged Supervised Fine-Tuning (SFT)
435
+ - License: The model is available for commercial use under a custom commercial license. For more information, please visit: [Meta AI Model and Library Downloads](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
436
+
437
+ ---
438
+
439
+ <h2>Intended Use 💼</h2>
440
+
441
+ When we created GenZ 13B, we had a clear vision of how it could be used to push the boundaries of what's possible with large language models. We also understand the importance of using such models responsibly. Here's a brief overview of the intended and out-of-scope uses for GenZ 13B.
442
+
443
+ <h3>Direct Use</h3>
444
+
445
+ GenZ 13B is designed to be a powerful tool for research on large language models. It's also an excellent foundation for further specialization and fine-tuning for specific use cases, such as:
446
+ - Text summarization
447
+ - Text generation
448
+ - Chatbot creation
449
+ - And much more!
450
+
451
+ <h3>Out-of-Scope Use 🚩</h3>
452
+
453
+ While GenZ 13B is versatile, there are certain uses that are out of scope:
454
+
455
+ - Production use without adequate assessment of risks and mitigation
456
+ - Any use cases which may be considered irresponsible or harmful
457
+ - Use in any manner that violates applicable laws or regulations, including trade compliance laws
458
+ - Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2
459
+
460
+ Remember, GenZ 13B, like any large language model, is trained on a large-scale corpora representative of the web, and therefore, may carry the stereotypes and biases commonly encountered online.
461
+
462
+ <h3>Recommendations 🧠</h3>
463
+
464
+ We recommend users of GenZ 13B to consider fine-tuning it for the specific set of tasks of interest. Appropriate precautions and guardrails should be taken for any production use. Using GenZ 13B responsibly is key to unlocking its full potential while maintaining a safe and respectful environment.
465
+
466
+ ---
467
+
468
+ <h2>Training Details 📚</h2>
469
+
470
+ When fine-tuning GenZ 13B, we took a meticulous approach to ensure we were building on the solid base of the pretrained Llama V2 13B model in the most effective way. Here's a look at the key details of our training process:
471
+
472
+ <h3>Fine-Tuning Training Data</h3>
473
+
474
+ For the fine-tuning process, we used a carefully curated mix of datasets. These included data from OpenAssistant, an instruction fine-tuning dataset, and Thought Source for the Chain Of Thought (CoT) approach. This diverse mix of data sources helped us enhance the model's capabilities across a range of tasks.
475
+
476
+ <h3>Fine-Tuning Procedure</h3>
477
+
478
+ We performed a full-parameter fine-tuning using Supervised Fine-Tuning (SFT). This was carried out on 4 A100 80GB GPUs, and the process took under 100 hours. To make the process more efficient, we used DeepSpeed's ZeRO-3 optimization.
479
+
480
+ <h3>Tokenizer</h3>
481
+
482
+ We used the SentencePiece tokenizer during the fine-tuning process. This tokenizer is known for its capability to handle open-vocabulary language tasks efficiently.
483
+
484
+
485
+ <h3>Hyperparameters</h3>
486
+
487
+
488
+ Here are the hyperparameters we used for fine-tuning:
489
+
490
+ | Hyperparameter | Value |
491
+ | -------------- | ----- |
492
+ | Warmup Ratio | 0.04 |
493
+ | Learning Rate Scheduler Type | Cosine |
494
+ | Learning Rate | 2e-5 |
495
+ | Number of Training Epochs | 3 |
496
+ | Per Device Training Batch Size | 4 |
497
+ | Gradient Accumulation Steps | 4 |
498
+ | Precision | FP16 |
499
+ | Optimizer | AdamW |
500
+
501
+ ---
502
+
503
+ <h2>Evaluations 🎯</h2>
504
+
505
+ Evaluating our model is a key part of our fine-tuning process. It helps us understand how our model is performing and how it stacks up against other models. Here's a look at some of the key evaluations for GenZ 13B:
506
+
507
+ <h3>Benchmark Comparison</h3>
508
+
509
+ We've compared GenZ V1 with V2 to understand the improvements our fine-tuning has achieved.
510
+
511
+ | Model Name | MT Bench | Vicuna Bench | MMLU | Human Eval | Hellaswag | BBH |
512
+ |:----------:|:--------:|:------------:|:----:|:----------:|:---------:|:----:|
513
+ | Genz 13B | 6.12 | 86.1 | 53.62| 17.68 | 77.38 | 37.76|
514
+ | Genz 13B v2| 6.79 | 87.2 | 53.68| 21.95 | 77.48 | 38.1 |
515
+
516
+ <h3>MT Bench Score</h3>
517
+
518
+ A key evaluation metric we use is the MT Bench score. This score provides a comprehensive assessment of our model's performance across a range of tasks.
519
+
520
+ We're proud to say that our model performs at a level that's close to the Llama-70B-chat model on the MT Bench and top of the list among 13B models.
521
+
522
+ <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_score.png" width="500"></p>
523
+
524
+ In the transition from GenZ V1 to V2, we noticed some fascinating performance shifts. While we saw a slight dip in coding performance, two other areas, Roleplay and Math, saw noticeable improvements.
525
+
526
+ ---
527
+
528
+ <h2>Looking Ahead 👀</h2>
529
+
530
+ We're excited about the journey ahead with GenZ. We're committed to continuously improving and enhancing our models, and we're excited to see what the open-source community will build with them. We believe in the power of collaboration, and we can't wait to see what we can achieve together.
531
+
532
+ Remember, we're just getting started. This is just the beginning of a journey that we believe will revolutionize the world of large language models. We invite you to join us on this exciting journey. Together, we can push the boundaries of what's possible with AI. 🚀
533
+
534
+ ---
535
+
536
+
537
+ Check the GitHub for the code -> [GenZ](https://raw.githubusercontent.com/BudEcosystem/GenZ)
538
+
539
+ <!-- original-model-card end -->