--- license: other language: - en pipeline_tag: text2text-generation tags: - alpaca - llama - chat - gpt4 inference: false --- This is a 4bit 128g GPTQ of [chansung's gpt4-alpaca-lora-13b](https://huggingface.co/chansung/gpt4-alpaca-lora-13b). More details will be put in this README tomorrow. Until then, please see one of my other GPTQ repos for more instructions. Command to create was: ``` cd gptq-safe && CUDA_VISIBLE_DEVICES=0 python3 llama.py /content/gpt4-alpaca-lora-13B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors /content/gpt4-alpaca-lora-13B-GPTQ-4bit-128g.safetensors ``` Note that as `--act-order` was used, this will not work with ooba's fork of GPTQ. You must use the qwopqwop repo as of April 13th. Command to clone the correct GPTQ-for-LLaMa repo for inference using `llama_inference.py`, or in `text-generation-webui`: ``` git clone -n https://github.com/qwopqwop200/GPTQ-for-LLaMa gptq-safe cd gptq-safe git checkout 58c8ab4c7aaccc50f507fd08cce941976affe5e0 ``` Tomorrow I will also do a `no-act-order.pt` which doesn't use `--act-order` and will therefore work with ooba's GPTQ fork. # Original model card is below This repository comes with LoRA checkpoint to make LLaMA into a chatbot like language model. The checkpoint is the output of instruction following fine-tuning process with the following settings on 8xA100(40G) DGX system. - Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation - Training script: ```shell python finetune.py \ --base_model='decapoda-research/llama-30b-hf' \ --data_path='alpaca_data_gpt4.json' \ --num_epochs=10 \ --cutoff_len=512 \ --group_by_length \ --output_dir='./gpt4-alpaca-lora-30b' \ --lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ --lora_r=16 \ --batch_size=... \ --micro_batch_size=... ``` You can find how the training went from W&B report [here](https://wandb.ai/chansung18/gpt4_alpaca_lora/runs/w3syd157?workspace=user-chansung18).