Fix q3_K_S quant
Browse files
README.md
CHANGED
@@ -78,6 +78,20 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
78 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
79 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
80 |
| Guanaco-7B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB| 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
83 |
|
|
|
78 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
79 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
80 |
| Guanaco-7B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB| 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
81 |
+
| guanaco-7B.ggmlv3.q2_K.bin | q2_K | 2 | 2.80 GB| 5.30 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
82 |
+
| guanaco-7B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.55 GB| 6.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
83 |
+
| guanaco-7B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.23 GB| 5.73 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
84 |
+
| guanaco-7B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.90 GB| 5.40 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
85 |
+
| guanaco-7B.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB| 6.29 GB | Original quant method, 4-bit. |
|
86 |
+
| guanaco-7B.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB| 6.71 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
87 |
+
| guanaco-7B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.05 GB| 6.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
88 |
+
| guanaco-7B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.79 GB| 6.29 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
89 |
+
| guanaco-7B.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB| 7.13 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
90 |
+
| guanaco-7B.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
|
91 |
+
| guanaco-7B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.77 GB| 7.27 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
92 |
+
| guanaco-7B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.63 GB| 7.13 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
93 |
+
| guanaco-7B.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB| 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
|
94 |
+
| guanaco-7B.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB| 9.66 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
|
95 |
|
96 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
97 |
|