File size: 5,697 Bytes
f3c7f0e e69267c 748baf3 e69267c 5c70aa1 6a4336e 5c70aa1 748baf3 5c70aa1 748baf3 5c70aa1 de3eb73 748baf3 6a4336e c25e934 e69267c 9f51330 e69267c c25e934 748baf3 05b36bd 748baf3 9f51330 748baf3 05b36bd 748baf3 05b36bd 748baf3 05b36bd 748baf3 05b36bd 748baf3 05b36bd 748baf3 05b36bd 748baf3 05b36bd 748baf3 034e79a 748baf3 de3eb73 05b36bd de3eb73 748baf3 e69267c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: other
---
# Koala: A Dialogue Model for Academic Research
This repo contains the weights of the Koala 7B model produced at Berkeley. It is the result of combining the diffs from https://huggingface.co/young-geng/koala with the original Llama 7B model.
This version has then been quantized to 4-bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
## My Koala repos
I have the following Koala model repositories available:
**13B models:**
* [Unquantized 13B model in HF format](https://huggingface.co/TheBloke/koala-13B-HF)
* [GPTQ quantized 4bit 13B model in `pt` and `safetensors` formats](https://huggingface.co/TheBloke/koala-13B-GPTQ-4bit-128g)
* [GPTQ quantized 4bit 13B model in GGML format for `llama.cpp`](https://huggingface.co/TheBloke/koala-13B-GPTQ-4bit-128g-GGML)
**7B models:**
* [Unquantized 7B model in HF format](https://huggingface.co/TheBloke/koala-7B-HF)
* [Unquantized 7B model in GGML format for llama.cpp](https://huggingface.co/TheBloke/koala-7b-ggml-unquantized)
* [GPTQ quantized 4bit 7B model in `pt` and `safetensors` formats](https://huggingface.co/TheBloke/koala-7B-GPTQ-4bit-128g)
* [GPTQ quantized 4bit 7B model in GGML format for `llama.cpp`](https://huggingface.co/TheBloke/koala-7B-GPTQ-4bit-128g-GGML)
## Quantization method
This GPTQ model was quantized using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) with the following commands:
```
python3 llama.py /content/koala-7B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save /content/koala-7B-4bit-128g.pt
python3 llama.py /content/koala-7B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors /content/koala-7B-4bit-128g.safetensors
```
I used the latest Triton branch of `GPTQ-for-LLaMa` but they can also be loaded with the CUDA branch.
## Provided files
I have provided both a `pt` and `safetensors` file. Either should work.
If both are present in the model directory for text-generation-webui I am not sure which it chooses, so you may want to place only one in the models folder.
The `olderFormat` file was created with the aim of then converting it to GGML for use with [llama.cpp](https://github.com/ggerganov/llama.cpp). At present this file does not work.
## How to run with `text-generation-webui`
GPTQ model files provided will not load as-is with [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui).
These model files require the latest version of the GPTQ code.
Here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI:
```
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
git clone https://github.com/oobabooga/text-generation-webui
mkdir -p text-generation-webui/repositories
ln -s GPTQ-for-LLaMa text-generation-webui/repositories/GPTQ-for-LLaMa
```
Then install this model into `text-generation-webui/models` and launch the UI as follows:
```
cd text-generation-webui
python server.py --model koala-7B-4bit-128g --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want
```
The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information.
If you cannot use the Triton branch of GPTQ for any reason, you can alternatively use the CUDA branch instead:
```
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa -b cuda
cd GPTQ-for-LLaMa
python setup_cuda.py install
```
Then link that into `text-generation-webui/repositories` as described above.
## How the Koala delta weights were merged
The Koala delta weights were originally merged using the following commands, producing [koala-7B-HF](https://huggingface.co/TheBloke/koala-7B-HF):
```
git clone https://github.com/young-geng/EasyLM
git clone https://huggingface.co/nyanko7/LLaMA-7B
mkdir koala_diffs && cd koala_diffs && wget https://huggingface.co/young-geng/koala/resolve/main/koala_7b_diff_v2
cd EasyLM
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.models.llama.convert_torch_to_easylm \
--checkpoint_dir=/content/LLaMA-7B \
--output_file=/content/llama-7B-LM \
--streaming=True
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.scripts.diff_checkpoint --recover_diff=True \
--load_base_checkpoint='params::/content/llama-7B-LM' \
--load_target_checkpoint='params::/content/koala_diffs/koala_7b_diff_v2' \
--output_file=/content/koala_7b.diff.weights \
--streaming=True
PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.models.llama.convert_easylm_to_hf --model_size=7b \
--output_dir=/content/koala-7B-HF \
--load_checkpoint='params::/content/koala_7b.diff.weights' \
--tokenizer_path=/content/LLaMA-7B/tokenizer.model
```
## Further info
Check out the following links to learn more about the Berkeley Koala model.
* [Blog post](https://bair.berkeley.edu/blog/2023/04/03/koala/)
* [Online demo](https://koala.lmsys.org/)
* [EasyLM: training and serving framework on GitHub](https://github.com/young-geng/EasyLM)
* [Documentation for running Koala locally](https://github.com/young-geng/EasyLM/blob/main/docs/koala.md)
## License
The model weights are intended for academic research only, subject to the
[model License of LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md),
[Terms of Use of the data generated by OpenAI](https://openai.com/policies/terms-of-use),
and [Privacy Practices of ShareGPT](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb).
Any other usage of the model weights, including but not limited to commercial usage, is strictly prohibited.
|