TheBloke commited on
Commit
278e5e4
1 Parent(s): adbbc14

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +373 -0
README.md ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: yeen214/llama2_7b_merge_orcafamily
3
+ datasets:
4
+ - Open-Orca/SlimOrca
5
+ - beaugogh/openorca-multiplechoice-10k
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: mit
10
+ metrics:
11
+ - accuracy
12
+ model_creator: yeen heui yeen
13
+ model_name: Llama2 7B Merge Orcafamily
14
+ model_type: llama
15
+ prompt_template: 'Info on prompt template will be added shortly.
16
+
17
+ '
18
+ quantized_by: TheBloke
19
+ ---
20
+ <!-- markdownlint-disable MD041 -->
21
+
22
+ <!-- header start -->
23
+ <!-- 200823 -->
24
+ <div style="width: auto; margin-left: auto; margin-right: auto">
25
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
26
+ </div>
27
+ <div style="display: flex; justify-content: space-between; width: 100%;">
28
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
30
+ </div>
31
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
33
+ </div>
34
+ </div>
35
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
36
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
+ <!-- header end -->
38
+
39
+ # Llama2 7B Merge Orcafamily - AWQ
40
+ - Model creator: [yeen heui yeen](https://huggingface.co/yeen214)
41
+ - Original model: [Llama2 7B Merge Orcafamily](https://huggingface.co/yeen214/llama2_7b_merge_orcafamily)
42
+
43
+ <!-- description start -->
44
+ ## Description
45
+
46
+ This repo contains AWQ model files for [yeen heui yeen's Llama2 7B Merge Orcafamily](https://huggingface.co/yeen214/llama2_7b_merge_orcafamily).
47
+
48
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
49
+
50
+
51
+ ### About AWQ
52
+
53
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
54
+
55
+ It is supported by:
56
+
57
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
58
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
59
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
60
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
61
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
62
+
63
+ <!-- description end -->
64
+ <!-- repositories-available start -->
65
+ ## Repositories available
66
+
67
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/llama2_7b_merge_orcafamily-AWQ)
68
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_7b_merge_orcafamily-GPTQ)
69
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2_7b_merge_orcafamily-GGUF)
70
+ * [yeen heui yeen's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/yeen214/llama2_7b_merge_orcafamily)
71
+ <!-- repositories-available end -->
72
+
73
+ <!-- prompt-template start -->
74
+ ## Prompt template: TBC
75
+
76
+ ```
77
+ Info on prompt template will be added shortly.
78
+
79
+ ```
80
+
81
+ <!-- prompt-template end -->
82
+ <!-- licensing start -->
83
+ ## Licensing
84
+
85
+ The creator of the source model has listed its license as `mit`, and this quantization has therefore used that same license.
86
+
87
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
88
+
89
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [yeen heui yeen's Llama2 7B Merge Orcafamily](https://huggingface.co/yeen214/llama2_7b_merge_orcafamily).
90
+ <!-- licensing end -->
91
+ <!-- README_AWQ.md-provided-files start -->
92
+ ## Provided files, and AWQ parameters
93
+
94
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
95
+
96
+ Models are released as sharded safetensors files.
97
+
98
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
99
+ | ------ | ---- | -- | ----------- | ------- | ---- |
100
+ | [main](https://huggingface.co/TheBloke/llama2_7b_merge_orcafamily-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 3.89 GB
101
+
102
+ <!-- README_AWQ.md-provided-files end -->
103
+
104
+ <!-- README_AWQ.md-text-generation-webui start -->
105
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
106
+
107
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
108
+
109
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
110
+
111
+ 1. Click the **Model tab**.
112
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/llama2_7b_merge_orcafamily-AWQ`.
113
+ 3. Click **Download**.
114
+ 4. The model will start downloading. Once it's finished it will say "Done".
115
+ 5. In the top left, click the refresh icon next to **Model**.
116
+ 6. In the **Model** dropdown, choose the model you just downloaded: `llama2_7b_merge_orcafamily-AWQ`
117
+ 7. Select **Loader: AutoAWQ**.
118
+ 8. Click Load, and the model will load and is now ready for use.
119
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
120
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
121
+ <!-- README_AWQ.md-text-generation-webui end -->
122
+
123
+ <!-- README_AWQ.md-use-from-vllm start -->
124
+ ## Multi-user inference server: vLLM
125
+
126
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
127
+
128
+ - Please ensure you are using vLLM version 0.2 or later.
129
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
130
+
131
+ For example:
132
+
133
+ ```shell
134
+ python3 -m vllm.entrypoints.api_server --model TheBloke/llama2_7b_merge_orcafamily-AWQ --quantization awq --dtype auto
135
+ ```
136
+
137
+ - When using vLLM from Python code, again set `quantization=awq`.
138
+
139
+ For example:
140
+
141
+ ```python
142
+ from vllm import LLM, SamplingParams
143
+
144
+ prompts = [
145
+ "Tell me about AI",
146
+ "Write a story about llamas",
147
+ "What is 291 - 150?",
148
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
149
+ ]
150
+ prompt_template=f'''Info on prompt template will be added shortly.
151
+ '''
152
+
153
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
154
+
155
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
156
+
157
+ llm = LLM(model="TheBloke/llama2_7b_merge_orcafamily-AWQ", quantization="awq", dtype="auto")
158
+
159
+ outputs = llm.generate(prompts, sampling_params)
160
+
161
+ # Print the outputs.
162
+ for output in outputs:
163
+ prompt = output.prompt
164
+ generated_text = output.outputs[0].text
165
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
166
+ ```
167
+ <!-- README_AWQ.md-use-from-vllm start -->
168
+
169
+ <!-- README_AWQ.md-use-from-tgi start -->
170
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
171
+
172
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
173
+
174
+ Example Docker parameters:
175
+
176
+ ```shell
177
+ --model-id TheBloke/llama2_7b_merge_orcafamily-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
178
+ ```
179
+
180
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
181
+
182
+ ```shell
183
+ pip3 install huggingface-hub
184
+ ```
185
+
186
+ ```python
187
+ from huggingface_hub import InferenceClient
188
+
189
+ endpoint_url = "https://your-endpoint-url-here"
190
+
191
+ prompt = "Tell me about AI"
192
+ prompt_template=f'''Info on prompt template will be added shortly.
193
+ '''
194
+
195
+ client = InferenceClient(endpoint_url)
196
+ response = client.text_generation(prompt,
197
+ max_new_tokens=128,
198
+ do_sample=True,
199
+ temperature=0.7,
200
+ top_p=0.95,
201
+ top_k=40,
202
+ repetition_penalty=1.1)
203
+
204
+ print(f"Model output: ", response)
205
+ ```
206
+ <!-- README_AWQ.md-use-from-tgi end -->
207
+
208
+ <!-- README_AWQ.md-use-from-python start -->
209
+ ## Inference from Python code using Transformers
210
+
211
+ ### Install the necessary packages
212
+
213
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
214
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
215
+
216
+ ```shell
217
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
218
+ ```
219
+
220
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
221
+
222
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
223
+
224
+ ```shell
225
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
226
+ ```
227
+
228
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
229
+
230
+ ```shell
231
+ pip3 uninstall -y autoawq
232
+ git clone https://github.com/casper-hansen/AutoAWQ
233
+ cd AutoAWQ
234
+ pip3 install .
235
+ ```
236
+
237
+ ### Transformers example code (requires Transformers 4.35.0 and later)
238
+
239
+ ```python
240
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
241
+
242
+ model_name_or_path = "TheBloke/llama2_7b_merge_orcafamily-AWQ"
243
+
244
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
245
+ model = AutoModelForCausalLM.from_pretrained(
246
+ model_name_or_path,
247
+ low_cpu_mem_usage=True,
248
+ device_map="cuda:0"
249
+ )
250
+
251
+ # Using the text streamer to stream output one token at a time
252
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
253
+
254
+ prompt = "Tell me about AI"
255
+ prompt_template=f'''Info on prompt template will be added shortly.
256
+ '''
257
+
258
+ # Convert prompt to tokens
259
+ tokens = tokenizer(
260
+ prompt_template,
261
+ return_tensors='pt'
262
+ ).input_ids.cuda()
263
+
264
+ generation_params = {
265
+ "do_sample": True,
266
+ "temperature": 0.7,
267
+ "top_p": 0.95,
268
+ "top_k": 40,
269
+ "max_new_tokens": 512,
270
+ "repetition_penalty": 1.1
271
+ }
272
+
273
+ # Generate streamed output, visible one token at a time
274
+ generation_output = model.generate(
275
+ tokens,
276
+ streamer=streamer,
277
+ **generation_params
278
+ )
279
+
280
+ # Generation without a streamer, which will include the prompt in the output
281
+ generation_output = model.generate(
282
+ tokens,
283
+ **generation_params
284
+ )
285
+
286
+ # Get the tokens from the output, decode them, print them
287
+ token_output = generation_output[0]
288
+ text_output = tokenizer.decode(token_output)
289
+ print("model.generate output: ", text_output)
290
+
291
+ # Inference is also possible via Transformers' pipeline
292
+ from transformers import pipeline
293
+
294
+ pipe = pipeline(
295
+ "text-generation",
296
+ model=model,
297
+ tokenizer=tokenizer,
298
+ **generation_params
299
+ )
300
+
301
+ pipe_output = pipe(prompt_template)[0]['generated_text']
302
+ print("pipeline output: ", pipe_output)
303
+
304
+ ```
305
+ <!-- README_AWQ.md-use-from-python end -->
306
+
307
+ <!-- README_AWQ.md-compatibility start -->
308
+ ## Compatibility
309
+
310
+ The files provided are tested to work with:
311
+
312
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
313
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
314
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
315
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
316
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
317
+
318
+ <!-- README_AWQ.md-compatibility end -->
319
+
320
+ <!-- footer start -->
321
+ <!-- 200823 -->
322
+ ## Discord
323
+
324
+ For further support, and discussions on these models and AI in general, join us at:
325
+
326
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
327
+
328
+ ## Thanks, and how to contribute
329
+
330
+ Thanks to the [chirper.ai](https://chirper.ai) team!
331
+
332
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
333
+
334
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
335
+
336
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
337
+
338
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
339
+
340
+ * Patreon: https://patreon.com/TheBlokeAI
341
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
342
+
343
+ **Special thanks to**: Aemon Algiz.
344
+
345
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
346
+
347
+
348
+ Thank you to all my generous patrons and donaters!
349
+
350
+ And thank you again to a16z for their generous grant.
351
+
352
+ <!-- footer end -->
353
+
354
+ # Original model card: yeen heui yeen's Llama2 7B Merge Orcafamily
355
+
356
+
357
+
358
+ This model is based on the LLama 7b model as a backbone, and datasets from various Orcas have been fine-tuned and merged.
359
+
360
+
361
+ The three models were combined, and the model with the best ARC and MMLU performance was given the highest weight.
362
+
363
+
364
+ First: fine-tuning beaugogh/openorca-multiplechoice-10k on llama2 7b, but using the NEFTune method.
365
+
366
+
367
+ Second: model fine-tuned with the SlimOrca dataset on llama2 7b.
368
+
369
+ Third : Model with beaugogh/openorca-multiplechoice-10k fine-tuned on llama2 7b.
370
+
371
+
372
+
373
+ We'll add the results once we have the official results