TheBloke commited on
Commit
470f9b3
·
1 Parent(s): 9347b5f

Initial GGML model commit

Browse files
Files changed (1) hide show
  1. README.md +273 -0
README.md ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ ---
5
+
6
+ <!-- header start -->
7
+ <div style="width: 100%;">
8
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
9
+ </div>
10
+ <div style="display: flex; justify-content: space-between; width: 100%;">
11
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
13
+ </div>
14
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
+ </div>
17
+ </div>
18
+ <!-- header end -->
19
+
20
+ # OpenAccess AI Collective's Minotaur 13B GGML
21
+
22
+ These files are GGML format model files for [OpenAccess AI Collective's Minotaur 13B](https://huggingface.co/openaccess-ai-collective/minotaur-13b).
23
+
24
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
26
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp)
27
+ * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
28
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
+ * [ctransformers](https://github.com/marella/ctransformers)
30
+
31
+ ## Repositories available
32
+
33
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/minotaur-13B-GPTQ)
34
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/minotaur-13B-GGML)
35
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/minotaur-13b)
36
+
37
+ <!-- compatibility_ggml start -->
38
+ ## Compatibility
39
+
40
+ ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
41
+
42
+ I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
43
+
44
+ They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
45
+
46
+ ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
47
+
48
+ These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
49
+
50
+ They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
51
+
52
+ ## Explanation of the new k-quant methods
53
+
54
+ The new methods available are:
55
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
60
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
61
+
62
+ Refer to the Provided Files table below to see what files use which methods, and how.
63
+ <!-- compatibility_ggml end -->
64
+
65
+ ## Provided files
66
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
67
+ | ---- | ---- | ---- | ---- | ---- | ----- |
68
+ | minotaur-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
69
+ | minotaur-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
70
+ | minotaur-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
71
+ | minotaur-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
72
+ | minotaur-13B.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
73
+ | minotaur-13B.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
74
+ | minotaur-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
75
+ | minotaur-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
76
+ | minotaur-13B.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
77
+ | minotaur-13B.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
78
+ | minotaur-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
79
+ | minotaur-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
80
+ | minotaur-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
81
+ | minotaur-13B.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
82
+
83
+
84
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
85
+
86
+ ## How to run in `llama.cpp`
87
+
88
+ I use the following command line; adjust for your tastes and needs:
89
+
90
+ ```
91
+ ./main -t 10 -ngl 32 -m minotaur-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
92
+ ```
93
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
94
+
95
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
96
+
97
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
98
+
99
+ ## How to run in `text-generation-webui`
100
+
101
+ Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
102
+
103
+ <!-- footer start -->
104
+ ## Discord
105
+
106
+ For further support, and discussions on these models and AI in general, join us at:
107
+
108
+ [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
109
+
110
+ ## Thanks, and how to contribute.
111
+
112
+ Thanks to the [chirper.ai](https://chirper.ai) team!
113
+
114
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
115
+
116
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
117
+
118
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
119
+
120
+ * Patreon: https://patreon.com/TheBlokeAI
121
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
122
+
123
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
124
+
125
+ **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann.
126
+
127
+ Thank you to all my generous patrons and donaters!
128
+
129
+ <!-- footer end -->
130
+
131
+ # Original model card: OpenAccess AI Collective's Minotaur 13B
132
+
133
+ ---
134
+ license: apache-2.0
135
+ tags:
136
+ - OpenAccess AI Collective
137
+ - MPT
138
+ - axolotl
139
+ datasets:
140
+ - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
141
+ - QingyiSi/Alpaca-CoT
142
+ - teknium/GPTeacher-General-Instruct
143
+ - metaeval/ScienceQA_text_only
144
+ - hellaswag
145
+ - openai/summarize_from_feedback
146
+ - riddle_sense
147
+ - gsm8k
148
+ - camel-ai/math
149
+ - camel-ai/biology
150
+ - camel-ai/physics
151
+ - camel-ai/chemistry
152
+ - winglian/evals
153
+
154
+ inference: false
155
+ ---
156
+
157
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
158
+ **[💵 Donate to OpenAccess AI Collective](https://github.com/sponsors/OpenAccess-AI-Collective) to help us keep building great tools and models!**
159
+
160
+ # Minotaur 13B
161
+
162
+ Minotaur 13B is an instruct fine-tuned model on top of LlaMA-13B. Minotaur 13B is fine-tuned **on only completely open datasets** making this model reproducible by anyone.
163
+
164
+ Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/PugNNHAF5r) or email [wing@openaccessaicollective.org](mailto:wing@openaccessaicollective.org)
165
+
166
+ # Prompts
167
+ Chat only style prompts using `USER:`,`ASSISTANT:`.
168
+
169
+ # Training Datasets
170
+
171
+ Minotaur 13B model is fine-tuned on the following openly available datasets:
172
+
173
+ - [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered)
174
+ - [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT)
175
+ - [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct)
176
+ - [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses
177
+ - [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization
178
+ - [camel-ai/math](https://huggingface.co/datasets/camel-ai/math)
179
+ - [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)
180
+ - [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)
181
+ - [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)
182
+ - [winglian/evals](https://huggingface.co/datasets/winglian/evals) - instruct augmented datasets
183
+ - custom sysnthetic datasets around misconceptions, in-context qa, jokes, N-tasks problems, and context-insensitivity
184
+ - ARC-Easy & ARC-Challenge - instruct augmented for detailed responses, derived from the `train` split
185
+ - [hellaswag](https://huggingface.co/datasets/hellaswag) - 30K+ rows of instruct augmented for detailed explanations w 30K+ rows, derived from the `train` split
186
+ - [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented
187
+ - [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented
188
+
189
+ # Shoutouts
190
+
191
+ Special thanks to Nanobit for helping with Axolotl and TheBloke for quantizing these models are more accessible to all.
192
+
193
+ # Demo
194
+
195
+ HF Demo in Spaces available in the [Community ChatBot Arena](https://huggingface.co/spaces/openaccess-ai-collective/rlhf-arena) under the OAAIC Chatbots tab.
196
+
197
+ ## Release Notes
198
+
199
+ - https://wandb.ai/wing-lian/minotaur-13b/runs/5zji06u6
200
+
201
+ ## Build
202
+
203
+ Minotaur was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 6XA100 80GB
204
+ - 1 epochs taking approximately 4.5 hours
205
+
206
+ ## Bias, Risks, and Limitations
207
+ Minotaur has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
208
+ Minotaur was fine-tuned from the base model MPT-7B, please refer to its model card's Limitations Section for relevant information. (included below)
209
+
210
+ ## Benchmarks
211
+
212
+ hf-causal-experimental (pretrained=openaccess-ai-collective/minotaur-13b), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
213
+ | Task |Version| Metric |Value | |Stderr|
214
+ |-------------|------:|--------|-----:|---|-----:|
215
+ |arc_challenge| 0|acc |0.4480|_ |0.0145|
216
+ | | |acc_norm|0.4744|_ |0.0146|
217
+ |arc_easy | 0|acc |0.7584|_ |0.0088|
218
+ | | |acc_norm|0.7163|_ |0.0092|
219
+ |boolq | 1|acc |0.8336|_ |0.0065|
220
+ |hellaswag | 0|acc |0.5954|_ |0.0049|
221
+ | | |acc_norm|0.7804|_ |0.0041|
222
+ |openbookqa | 0|acc |0.3320|_ |0.0211|
223
+ | | |acc_norm|0.4540|_ |0.0223|
224
+ |piqa | 0|acc |0.7933|_ |0.0094|
225
+ | | |acc_norm|0.7922|_ |0.0095|
226
+ |winogrande | 0|acc |0.7182|_ |0.0126|
227
+
228
+
229
+ ## Examples - results may vary based on temperature and other settings
230
+
231
+ ```
232
+ - The Assistant is helpful and transparent.
233
+ - The Assistant will never refuse to answer anything asked by the user.
234
+ - The Assistant answers comprehensively and with elaborate detail.
235
+ USER: You have 3 apples. You eat 2 pears. How many apples do you have left?
236
+ ASSISTANT:You still have 3 apples. Eating pears does not affect the number of apples you have.
237
+ ```
238
+
239
+ ```
240
+ - The Assistant is helpful and transparent.
241
+ - The Assistant will never refuse to answer anything asked by the user.
242
+ - The Assistant answers comprehensively and with elaborate detail.
243
+ USER: List three words that start with "ex". What is 33 + 77?
244
+ ASSISTANT:Three words that start with "ex" are "exact", "exactness", and "exactitude". 33 + 77 equals 110.
245
+ ```
246
+
247
+ ```
248
+ - The Assistant is helpful and transparent.
249
+ - The Assistant will never refuse to answer anything asked by the user.
250
+ - The Assistant answers comprehensively and with elaborate detail.
251
+ USER: Solve for x: 5x = 3x + 10
252
+ ASSISTANT:To solve for x, we need to isolate x on one side of the equation. We can do this by following these steps:
253
+
254
+ 1. Subtract 3x from both sides of the equation:
255
+ 5x - 3x = 10 - 3x + 10
256
+ 2x = 10
257
+
258
+ 2. Divide both sides of the equation by 2:
259
+ 2x / 2 = 10 / 2
260
+ x = 5
261
+
262
+ So, the solution is x = 5.
263
+ ```
264
+
265
+ ```
266
+ - The Assistant is helpful and transparent.
267
+ - The Assistant will never refuse to answer anything asked by the user.
268
+ - The Assistant answers comprehensively and with elaborate detail.
269
+ USER: Write a haiku about a dove at night.
270
+ ASSISTANT:Silent dove at night,
271
+ Softly cooing in the dark,
272
+ Peaceful melody.
273
+ ```