ThePieroCV
commited on
Commit
·
c41600a
1
Parent(s):
4e3c9d3
Added first model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- myModel_LunarLander_2.zip +3 -0
- myModel_LunarLander_2/_stable_baselines3_version +1 -0
- myModel_LunarLander_2/data +94 -0
- myModel_LunarLander_2/policy.optimizer.pth +3 -0
- myModel_LunarLander_2/policy.pth +3 -0
- myModel_LunarLander_2/pytorch_variables.pth +3 -0
- myModel_LunarLander_2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 270.82 +/- 17.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd11149830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd111498c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd11149950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd111499e0>", "_build": "<function ActorCriticPolicy._build at 0x7efd11149a70>", "forward": "<function ActorCriticPolicy.forward at 0x7efd11149b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd11149b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd11149c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd11149cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd11149d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd11149dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd11198840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651895801.7417972, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqLbDx5ML0/wEwPPtLeZT7ioZA62x6sPQAAAAAAAAAAgN8MvRQYnrrZ0DK1YjKYsHM8tDp9kVI0AACAPwAAgD/NuJ274b6JvCAc3jvipes85d8WvcTgrb0AAIA/AACAP2buUTs4sdK7RhHkPPG+FT07pmK9TSb1PQAAgD8AAIA/mr26PAMvP7zlyPu8pSBJvWS1p70026S+AACAPwAAgD9mXlE9sImOP+Jq4T3QZ/W+EHWaPfWHeLwAAAAAAAAAAOacH76Gm38/mH+jvRz1rL6wU5y+Yag2PgAAAAAAAAAAWnmKvRnSsT9j2yC/LzFcvud64Ls+rE++AAAAAAAAAACANl69E+iCPoik4r1HxqG+EgifvQyvE7wAAAAAAAAAADrVfr4T3m8/YGGtPpWVs74R56m++6fGPgAAAAAAAAAApqvsPXaGAT8C1zq+386Lvl5ypjqimZm9AAAAAAAAAAAavCM+HrObPh93sr4dV1u+4e79vVNKVL0AAAAAAAAAADP8pb3HWAk/Up//vLuejr4R3KG9hwScugAAAAAAAAAAU2YuvpbOQj8eAJS8j/zAvvz7Nr5TkZk9AAAAAAAAAACagV87AXGhPmO1Dj2bs7C+D/nGPBwNNT0AAAAAAAAAAABDfL2c7Bi8+kkyPHN8lDyVfIi93T92PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcJnTZbFwcUCUhpRSlIwBbJRNEgGMAXSUR0ChxT01hsqKdX2UKGgGaAloD0MIyeaqeQ4kbkCUhpRSlGgVTRYBaBZHQKHFVrRBu4x1fZQoaAZoCWgPQwg08+SagrJwQJSGlFKUaBVL6mgWR0ChxWZLh73PdX2UKGgGaAloD0MIucfSh+4yc0CUhpRSlGgVTQEBaBZHQKHFagow22p1fZQoaAZoCWgPQwgxCKwcWjtuQJSGlFKUaBVNRQFoFkdAocW6wIMSb3V9lChoBmgJaA9DCORp+YErvHBAlIaUUpRoFU0gAWgWR0Chxf6Zpi7TdX2UKGgGaAloD0MIGH0FaUYecUCUhpRSlGgVTQwBaBZHQKHGfspG4I91fZQoaAZoCWgPQwgJbw9CwH1vQJSGlFKUaBVL82gWR0ChxwFS88LbdX2UKGgGaAloD0MI6q7sgkGVcUCUhpRSlGgVTQYBaBZHQKHHGVzp5eJ1fZQoaAZoCWgPQwhD5sqgWthwQJSGlFKUaBVL9mgWR0Chx03Pqs2fdX2UKGgGaAloD0MISbn7HJ8PcUCUhpRSlGgVS/doFkdAocdkH+qBE3V9lChoBmgJaA9DCIYCtoORtXJAlIaUUpRoFU0MAWgWR0Chx28Wj45+dX2UKGgGaAloD0MINum2RC5Ub0CUhpRSlGgVS/JoFkdAocd3cvduYXV9lChoBmgJaA9DCMNlFTYDm3JAlIaUUpRoFUvhaBZHQKHHtOgxrSF1fZQoaAZoCWgPQwgxt3u5z7VuQJSGlFKUaBVNEgFoFkdAocfjr5ZbIXV9lChoBmgJaA9DCCfbwB0o2nJAlIaUUpRoFUv+aBZHQKHIvTRYzSF1fZQoaAZoCWgPQwjUR+APv6hzQJSGlFKUaBVL/GgWR0ChyOGzKLbYdX2UKGgGaAloD0MIgzRj0fRIcECUhpRSlGgVS+RoFkdAocjmSlnAZnV9lChoBmgJaA9DCCWVKeYgB3FAlIaUUpRoFU0CAWgWR0ChyPSAxzq9dX2UKGgGaAloD0MIk6mCUYnycUCUhpRSlGgVTRQBaBZHQKHJIPyTY/V1fZQoaAZoCWgPQwgQeGAAYURxQJSGlFKUaBVNCgFoFkdAocmk/hVENXV9lChoBmgJaA9DCDiie9a18XBAlIaUUpRoFUvwaBZHQKHJwsEq2Bt1fZQoaAZoCWgPQwj7lc6H56BvQJSGlFKUaBVL7GgWR0ChyjfTTfBOdX2UKGgGaAloD0MIyD8ziE9Jc0CUhpRSlGgVS/loFkdAocpT1CgK4XV9lChoBmgJaA9DCNrlWx/WanJAlIaUUpRoFU0LAWgWR0Chyxx0+1SgdX2UKGgGaAloD0MIsoF0selPc0CUhpRSlGgVTQ4BaBZHQKHLIjLSuyN1fZQoaAZoCWgPQwjdlsgF545sQJSGlFKUaBVNGAFoFkdAocs++49X93V9lChoBmgJaA9DCEgzFk0n1nBAlIaUUpRoFUv1aBZHQKHLWRaouPF1fZQoaAZoCWgPQwhYAb7bfL1wQJSGlFKUaBVNDgFoFkdAoct+saKk23V9lChoBmgJaA9DCLX5f9UR23BAlIaUUpRoFU0xAWgWR0Chy4aaLGaQdX2UKGgGaAloD0MIJ94BnvQ9cUCUhpRSlGgVTQUBaBZHQKHMe5q/M4d1fZQoaAZoCWgPQwgrFr8prOtxQJSGlFKUaBVNCQFoFkdAocyzGm1pkHV9lChoBmgJaA9DCGjNj7/0g3BAlIaUUpRoFU0LAWgWR0ChzQ/vv0AcdX2UKGgGaAloD0MI64uEttxCc0CUhpRSlGgVTRsBaBZHQKHNGBT4tYl1fZQoaAZoCWgPQwhanDHMCfRxQJSGlFKUaBVNIQFoFkdAoc0gpvxYrHV9lChoBmgJaA9DCIgSLXm8/29AlIaUUpRoFU0OAWgWR0ChzdY+KTB7dX2UKGgGaAloD0MIHH433bL4ckCUhpRSlGgVTSABaBZHQKHN+GSpzcR1fZQoaAZoCWgPQwgBh1Cl5oBwQJSGlFKUaBVNCQFoFkdAoc5FBrvb5HV9lChoBmgJaA9DCJ28yAT8K3JAlIaUUpRoFUv6aBZHQKHPJWmP5pJ1fZQoaAZoCWgPQwhOm3EaYlpwQJSGlFKUaBVNDAFoFkdAoc815jYqXnV9lChoBmgJaA9DCObo8XtbwnJAlIaUUpRoFU0MAWgWR0ChzzpdKNADdX2UKGgGaAloD0MIGH0FaQapcECUhpRSlGgVTQ8BaBZHQKHZThrFfiR1fZQoaAZoCWgPQwjadARwc7hzQJSGlFKUaBVNHgFoFkdAodnMcOskp3V9lChoBmgJaA9DCNr/AGuVsHJAlIaUUpRoFU0yAWgWR0Ch2iZprULEdX2UKGgGaAloD0MIDFuzldfCckCUhpRSlGgVS/hoFkdAodpM163RX3V9lChoBmgJaA9DCGyYofHEenBAlIaUUpRoFU0EAWgWR0Ch2yhXr+o+dX2UKGgGaAloD0MIXkiHh3CGcECUhpRSlGgVTREBaBZHQKHbUOwPiDN1fZQoaAZoCWgPQwgs1nCRu9JyQJSGlFKUaBVNJwFoFkdAodtWF6AvtnV9lChoBmgJaA9DCJ9Yp8r363BAlIaUUpRoFU0cAWgWR0Ch24SvkiljdX2UKGgGaAloD0MIf/W4b7X4b0CUhpRSlGgVS/JoFkdAodugMrmQsHV9lChoBmgJaA9DCFOxMa8j825AlIaUUpRoFU0AAWgWR0Ch2/PUz9CNdX2UKGgGaAloD0MI20yFeGTVcUCUhpRSlGgVS/doFkdAodwclE7W/nV9lChoBmgJaA9DCIIC7+RTTXNAlIaUUpRoFU0CAWgWR0Ch3TU+TvAodX2UKGgGaAloD0MIJO8cypATckCUhpRSlGgVTQkBaBZHQKHdRKcurZJ1fZQoaAZoCWgPQwh6bwwBwEFwQJSGlFKUaBVNIgFoFkdAod3GS4e9z3V9lChoBmgJaA9DCB/2QgHbvXBAlIaUUpRoFU0cAWgWR0Ch3dZSeiBYdX2UKGgGaAloD0MIsJEkCBemckCUhpRSlGgVTQcBaBZHQKHeAW4Vh1F1fZQoaAZoCWgPQwgwvJLkuflhQJSGlFKUaBVN6ANoFkdAod4YRmK64HV9lChoBmgJaA9DCFJ95xclt25AlIaUUpRoFUv+aBZHQKHeNWxQizN1fZQoaAZoCWgPQwh0llmEYlNwQJSGlFKUaBVL9mgWR0Ch3jqFAVwhdX2UKGgGaAloD0MIZLDiVGvTcECUhpRSlGgVS+doFkdAod8QZ88cMnV9lChoBmgJaA9DCLHh6ZVyv3BAlIaUUpRoFUv+aBZHQKHfQfp2U0N1fZQoaAZoCWgPQwggJuFCnqlzQJSGlFKUaBVNEQFoFkdAod9luzhP03V9lChoBmgJaA9DCPbtJCI8GXJAlIaUUpRoFU0FAWgWR0Ch36t7BwdbdX2UKGgGaAloD0MIvi8uVakDcUCUhpRSlGgVTSkBaBZHQKHf5WluWKN1fZQoaAZoCWgPQwi6opQQ7JdyQJSGlFKUaBVL/2gWR0Ch3+xqfvnbdX2UKGgGaAloD0MIhSaJJaVZckCUhpRSlGgVTS4BaBZHQKHgwiD/VAl1fZQoaAZoCWgPQwh/FHXmntVuQJSGlFKUaBVNAAFoFkdAoeEqWLP2PHV9lChoBmgJaA9DCMb83NCUyHJAlIaUUpRoFU0FAWgWR0Ch4Uy2QXANdX2UKGgGaAloD0MI+8vuyUOjb0CUhpRSlGgVS/1oFkdAoeGuE25xznV9lChoBmgJaA9DCOBL4UFzynBAlIaUUpRoFUv/aBZHQKHh4lZX+2p1fZQoaAZoCWgPQwgIHXQJB3VwQJSGlFKUaBVNDgFoFkdAoeHkOG0u2HV9lChoBmgJaA9DCJc7M8FwzW1AlIaUUpRoFUv+aBZHQKHh9CyhSLt1fZQoaAZoCWgPQwgjoS3nUtRyQJSGlFKUaBVL/WgWR0Ch4gr5IpYtdX2UKGgGaAloD0MIqMgh4qbqcUCUhpRSlGgVTSMBaBZHQKHimkC3gDR1fZQoaAZoCWgPQwjJVwIpMZdwQJSGlFKUaBVL+GgWR0Ch4s72+PBBdX2UKGgGaAloD0MIlq/L8F9Yc0CUhpRSlGgVTQUBaBZHQKHjqVsUIs11fZQoaAZoCWgPQwjFcHUARDNnQJSGlFKUaBVN6ANoFkdAoePHrUsnRnV9lChoBmgJaA9DCOhoVUs6UnBAlIaUUpRoFU0CAWgWR0Ch493c580DdX2UKGgGaAloD0MIEOoihTKrb0CUhpRSlGgVTS4BaBZHQKHkBv/BFd91fZQoaAZoCWgPQwjW/WMhupdxQJSGlFKUaBVL9GgWR0Ch5Ic6/7BPdX2UKGgGaAloD0MIje+LS1WxckCUhpRSlGgVTTEBaBZHQKHkk0O3DvV1fZQoaAZoCWgPQwjMKmwGuHJUQJSGlFKUaBVLq2gWR0Ch5JEu6ErYdX2UKGgGaAloD0MIZohjXdzMcUCUhpRSlGgVS+9oFkdAoeTpt78ejnV9lChoBmgJaA9DCDAPmfKhL25AlIaUUpRoFU0VAWgWR0Ch5WJ0OmSAdX2UKGgGaAloD0MI6jwq/m9WbkCUhpRSlGgVS/loFkdAoeWrASFoMHV9lChoBmgJaA9DCNqrj4e+MG9AlIaUUpRoFUv9aBZHQKHluyiVSoB1fZQoaAZoCWgPQwg3M/rRsJtyQJSGlFKUaBVL+2gWR0Ch5drvb48EdX2UKGgGaAloD0MIHT7pRMKvcECUhpRSlGgVTRUBaBZHQKHl4lOXVsl1fZQoaAZoCWgPQwg8pBgg0VZTQJSGlFKUaBVLmWgWR0Ch5rfrSmZWdX2UKGgGaAloD0MIx9Rd2UUwckCUhpRSlGgVTQkBaBZHQKHmw5ksjFB1fZQoaAZoCWgPQwidnKG4o7xxQJSGlFKUaBVNAgJoFkdAoebxFVktmXV9lChoBmgJaA9DCH+g3LbvLnFAlIaUUpRoFU0kAWgWR0Ch5vSsKb8WdX2UKGgGaAloD0MIzSIUW0FMbkCUhpRSlGgVS/1oFkdAoedvEVFhHHV9lChoBmgJaA9DCIem7PQDcnFAlIaUUpRoFU0LAWgWR0Ch57RNh3JQdX2UKGgGaAloD0MIM1AZ//7HcECUhpRSlGgVTRkBaBZHQKHnutZFG5N1fZQoaAZoCWgPQwg2lNqL6CNyQJSGlFKUaBVNFwFoFkdAoegHYvnKXHV9lChoBmgJaA9DCKCkwAKYaG5AlIaUUpRoFUvyaBZHQKHoY3AmAsl1fZQoaAZoCWgPQwhBuW3fow9yQJSGlFKUaBVNHgFoFkdAoeitn/T9bXV9lChoBmgJaA9DCFvOpbiqOnFAlIaUUpRoFUvpaBZHQKHotH8TBZZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
myModel_LunarLander_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7a8a9b1188c55a383288dd1725827f7a3457a45040b790834a29fd09e1db497
|
3 |
+
size 144068
|
myModel_LunarLander_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
myModel_LunarLander_2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efd11149830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd111498c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd11149950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd111499e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efd11149a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efd11149b00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd11149b90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efd11149c20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd11149cb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd11149d40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd11149dd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7efd11198840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651895801.7417972,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqLbDx5ML0/wEwPPtLeZT7ioZA62x6sPQAAAAAAAAAAgN8MvRQYnrrZ0DK1YjKYsHM8tDp9kVI0AACAPwAAgD/NuJ274b6JvCAc3jvipes85d8WvcTgrb0AAIA/AACAP2buUTs4sdK7RhHkPPG+FT07pmK9TSb1PQAAgD8AAIA/mr26PAMvP7zlyPu8pSBJvWS1p70026S+AACAPwAAgD9mXlE9sImOP+Jq4T3QZ/W+EHWaPfWHeLwAAAAAAAAAAOacH76Gm38/mH+jvRz1rL6wU5y+Yag2PgAAAAAAAAAAWnmKvRnSsT9j2yC/LzFcvud64Ls+rE++AAAAAAAAAACANl69E+iCPoik4r1HxqG+EgifvQyvE7wAAAAAAAAAADrVfr4T3m8/YGGtPpWVs74R56m++6fGPgAAAAAAAAAApqvsPXaGAT8C1zq+386Lvl5ypjqimZm9AAAAAAAAAAAavCM+HrObPh93sr4dV1u+4e79vVNKVL0AAAAAAAAAADP8pb3HWAk/Up//vLuejr4R3KG9hwScugAAAAAAAAAAU2YuvpbOQj8eAJS8j/zAvvz7Nr5TkZk9AAAAAAAAAACagV87AXGhPmO1Dj2bs7C+D/nGPBwNNT0AAAAAAAAAAABDfL2c7Bi8+kkyPHN8lDyVfIi93T92PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVXBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcJnTZbFwcUCUhpRSlIwBbJRNEgGMAXSUR0ChxT01hsqKdX2UKGgGaAloD0MIyeaqeQ4kbkCUhpRSlGgVTRYBaBZHQKHFVrRBu4x1fZQoaAZoCWgPQwg08+SagrJwQJSGlFKUaBVL6mgWR0ChxWZLh73PdX2UKGgGaAloD0MIucfSh+4yc0CUhpRSlGgVTQEBaBZHQKHFagow22p1fZQoaAZoCWgPQwgxCKwcWjtuQJSGlFKUaBVNRQFoFkdAocW6wIMSb3V9lChoBmgJaA9DCORp+YErvHBAlIaUUpRoFU0gAWgWR0Chxf6Zpi7TdX2UKGgGaAloD0MIGH0FaUYecUCUhpRSlGgVTQwBaBZHQKHGfspG4I91fZQoaAZoCWgPQwgJbw9CwH1vQJSGlFKUaBVL82gWR0ChxwFS88LbdX2UKGgGaAloD0MI6q7sgkGVcUCUhpRSlGgVTQYBaBZHQKHHGVzp5eJ1fZQoaAZoCWgPQwhD5sqgWthwQJSGlFKUaBVL9mgWR0Chx03Pqs2fdX2UKGgGaAloD0MISbn7HJ8PcUCUhpRSlGgVS/doFkdAocdkH+qBE3V9lChoBmgJaA9DCIYCtoORtXJAlIaUUpRoFU0MAWgWR0Chx28Wj45+dX2UKGgGaAloD0MINum2RC5Ub0CUhpRSlGgVS/JoFkdAocd3cvduYXV9lChoBmgJaA9DCMNlFTYDm3JAlIaUUpRoFUvhaBZHQKHHtOgxrSF1fZQoaAZoCWgPQwgxt3u5z7VuQJSGlFKUaBVNEgFoFkdAocfjr5ZbIXV9lChoBmgJaA9DCCfbwB0o2nJAlIaUUpRoFUv+aBZHQKHIvTRYzSF1fZQoaAZoCWgPQwjUR+APv6hzQJSGlFKUaBVL/GgWR0ChyOGzKLbYdX2UKGgGaAloD0MIgzRj0fRIcECUhpRSlGgVS+RoFkdAocjmSlnAZnV9lChoBmgJaA9DCCWVKeYgB3FAlIaUUpRoFU0CAWgWR0ChyPSAxzq9dX2UKGgGaAloD0MIk6mCUYnycUCUhpRSlGgVTRQBaBZHQKHJIPyTY/V1fZQoaAZoCWgPQwgQeGAAYURxQJSGlFKUaBVNCgFoFkdAocmk/hVENXV9lChoBmgJaA9DCDiie9a18XBAlIaUUpRoFUvwaBZHQKHJwsEq2Bt1fZQoaAZoCWgPQwj7lc6H56BvQJSGlFKUaBVL7GgWR0ChyjfTTfBOdX2UKGgGaAloD0MIyD8ziE9Jc0CUhpRSlGgVS/loFkdAocpT1CgK4XV9lChoBmgJaA9DCNrlWx/WanJAlIaUUpRoFU0LAWgWR0Chyxx0+1SgdX2UKGgGaAloD0MIsoF0selPc0CUhpRSlGgVTQ4BaBZHQKHLIjLSuyN1fZQoaAZoCWgPQwjdlsgF545sQJSGlFKUaBVNGAFoFkdAocs++49X93V9lChoBmgJaA9DCEgzFk0n1nBAlIaUUpRoFUv1aBZHQKHLWRaouPF1fZQoaAZoCWgPQwhYAb7bfL1wQJSGlFKUaBVNDgFoFkdAoct+saKk23V9lChoBmgJaA9DCLX5f9UR23BAlIaUUpRoFU0xAWgWR0Chy4aaLGaQdX2UKGgGaAloD0MIJ94BnvQ9cUCUhpRSlGgVTQUBaBZHQKHMe5q/M4d1fZQoaAZoCWgPQwgrFr8prOtxQJSGlFKUaBVNCQFoFkdAocyzGm1pkHV9lChoBmgJaA9DCGjNj7/0g3BAlIaUUpRoFU0LAWgWR0ChzQ/vv0AcdX2UKGgGaAloD0MI64uEttxCc0CUhpRSlGgVTRsBaBZHQKHNGBT4tYl1fZQoaAZoCWgPQwhanDHMCfRxQJSGlFKUaBVNIQFoFkdAoc0gpvxYrHV9lChoBmgJaA9DCIgSLXm8/29AlIaUUpRoFU0OAWgWR0ChzdY+KTB7dX2UKGgGaAloD0MIHH433bL4ckCUhpRSlGgVTSABaBZHQKHN+GSpzcR1fZQoaAZoCWgPQwgBh1Cl5oBwQJSGlFKUaBVNCQFoFkdAoc5FBrvb5HV9lChoBmgJaA9DCJ28yAT8K3JAlIaUUpRoFUv6aBZHQKHPJWmP5pJ1fZQoaAZoCWgPQwhOm3EaYlpwQJSGlFKUaBVNDAFoFkdAoc815jYqXnV9lChoBmgJaA9DCObo8XtbwnJAlIaUUpRoFU0MAWgWR0ChzzpdKNADdX2UKGgGaAloD0MIGH0FaQapcECUhpRSlGgVTQ8BaBZHQKHZThrFfiR1fZQoaAZoCWgPQwjadARwc7hzQJSGlFKUaBVNHgFoFkdAodnMcOskp3V9lChoBmgJaA9DCNr/AGuVsHJAlIaUUpRoFU0yAWgWR0Ch2iZprULEdX2UKGgGaAloD0MIDFuzldfCckCUhpRSlGgVS/hoFkdAodpM163RX3V9lChoBmgJaA9DCGyYofHEenBAlIaUUpRoFU0EAWgWR0Ch2yhXr+o+dX2UKGgGaAloD0MIXkiHh3CGcECUhpRSlGgVTREBaBZHQKHbUOwPiDN1fZQoaAZoCWgPQwgs1nCRu9JyQJSGlFKUaBVNJwFoFkdAodtWF6AvtnV9lChoBmgJaA9DCJ9Yp8r363BAlIaUUpRoFU0cAWgWR0Ch24SvkiljdX2UKGgGaAloD0MIf/W4b7X4b0CUhpRSlGgVS/JoFkdAodugMrmQsHV9lChoBmgJaA9DCFOxMa8j825AlIaUUpRoFU0AAWgWR0Ch2/PUz9CNdX2UKGgGaAloD0MI20yFeGTVcUCUhpRSlGgVS/doFkdAodwclE7W/nV9lChoBmgJaA9DCIIC7+RTTXNAlIaUUpRoFU0CAWgWR0Ch3TU+TvAodX2UKGgGaAloD0MIJO8cypATckCUhpRSlGgVTQkBaBZHQKHdRKcurZJ1fZQoaAZoCWgPQwh6bwwBwEFwQJSGlFKUaBVNIgFoFkdAod3GS4e9z3V9lChoBmgJaA9DCB/2QgHbvXBAlIaUUpRoFU0cAWgWR0Ch3dZSeiBYdX2UKGgGaAloD0MIsJEkCBemckCUhpRSlGgVTQcBaBZHQKHeAW4Vh1F1fZQoaAZoCWgPQwgwvJLkuflhQJSGlFKUaBVN6ANoFkdAod4YRmK64HV9lChoBmgJaA9DCFJ95xclt25AlIaUUpRoFUv+aBZHQKHeNWxQizN1fZQoaAZoCWgPQwh0llmEYlNwQJSGlFKUaBVL9mgWR0Ch3jqFAVwhdX2UKGgGaAloD0MIZLDiVGvTcECUhpRSlGgVS+doFkdAod8QZ88cMnV9lChoBmgJaA9DCLHh6ZVyv3BAlIaUUpRoFUv+aBZHQKHfQfp2U0N1fZQoaAZoCWgPQwggJuFCnqlzQJSGlFKUaBVNEQFoFkdAod9luzhP03V9lChoBmgJaA9DCPbtJCI8GXJAlIaUUpRoFU0FAWgWR0Ch36t7BwdbdX2UKGgGaAloD0MIvi8uVakDcUCUhpRSlGgVTSkBaBZHQKHf5WluWKN1fZQoaAZoCWgPQwi6opQQ7JdyQJSGlFKUaBVL/2gWR0Ch3+xqfvnbdX2UKGgGaAloD0MIhSaJJaVZckCUhpRSlGgVTS4BaBZHQKHgwiD/VAl1fZQoaAZoCWgPQwh/FHXmntVuQJSGlFKUaBVNAAFoFkdAoeEqWLP2PHV9lChoBmgJaA9DCMb83NCUyHJAlIaUUpRoFU0FAWgWR0Ch4Uy2QXANdX2UKGgGaAloD0MI+8vuyUOjb0CUhpRSlGgVS/1oFkdAoeGuE25xznV9lChoBmgJaA9DCOBL4UFzynBAlIaUUpRoFUv/aBZHQKHh4lZX+2p1fZQoaAZoCWgPQwgIHXQJB3VwQJSGlFKUaBVNDgFoFkdAoeHkOG0u2HV9lChoBmgJaA9DCJc7M8FwzW1AlIaUUpRoFUv+aBZHQKHh9CyhSLt1fZQoaAZoCWgPQwgjoS3nUtRyQJSGlFKUaBVL/WgWR0Ch4gr5IpYtdX2UKGgGaAloD0MIqMgh4qbqcUCUhpRSlGgVTSMBaBZHQKHimkC3gDR1fZQoaAZoCWgPQwjJVwIpMZdwQJSGlFKUaBVL+GgWR0Ch4s72+PBBdX2UKGgGaAloD0MIlq/L8F9Yc0CUhpRSlGgVTQUBaBZHQKHjqVsUIs11fZQoaAZoCWgPQwjFcHUARDNnQJSGlFKUaBVN6ANoFkdAoePHrUsnRnV9lChoBmgJaA9DCOhoVUs6UnBAlIaUUpRoFU0CAWgWR0Ch493c580DdX2UKGgGaAloD0MIEOoihTKrb0CUhpRSlGgVTS4BaBZHQKHkBv/BFd91fZQoaAZoCWgPQwjW/WMhupdxQJSGlFKUaBVL9GgWR0Ch5Ic6/7BPdX2UKGgGaAloD0MIje+LS1WxckCUhpRSlGgVTTEBaBZHQKHkk0O3DvV1fZQoaAZoCWgPQwjMKmwGuHJUQJSGlFKUaBVLq2gWR0Ch5JEu6ErYdX2UKGgGaAloD0MIZohjXdzMcUCUhpRSlGgVS+9oFkdAoeTpt78ejnV9lChoBmgJaA9DCDAPmfKhL25AlIaUUpRoFU0VAWgWR0Ch5WJ0OmSAdX2UKGgGaAloD0MI6jwq/m9WbkCUhpRSlGgVS/loFkdAoeWrASFoMHV9lChoBmgJaA9DCNqrj4e+MG9AlIaUUpRoFUv9aBZHQKHluyiVSoB1fZQoaAZoCWgPQwg3M/rRsJtyQJSGlFKUaBVL+2gWR0Ch5drvb48EdX2UKGgGaAloD0MIHT7pRMKvcECUhpRSlGgVTRUBaBZHQKHl4lOXVsl1fZQoaAZoCWgPQwg8pBgg0VZTQJSGlFKUaBVLmWgWR0Ch5rfrSmZWdX2UKGgGaAloD0MIx9Rd2UUwckCUhpRSlGgVTQkBaBZHQKHmw5ksjFB1fZQoaAZoCWgPQwidnKG4o7xxQJSGlFKUaBVNAgJoFkdAoebxFVktmXV9lChoBmgJaA9DCH+g3LbvLnFAlIaUUpRoFU0kAWgWR0Ch5vSsKb8WdX2UKGgGaAloD0MIzSIUW0FMbkCUhpRSlGgVS/1oFkdAoedvEVFhHHV9lChoBmgJaA9DCIem7PQDcnFAlIaUUpRoFU0LAWgWR0Ch57RNh3JQdX2UKGgGaAloD0MIM1AZ//7HcECUhpRSlGgVTRkBaBZHQKHnutZFG5N1fZQoaAZoCWgPQwg2lNqL6CNyQJSGlFKUaBVNFwFoFkdAoegHYvnKXHV9lChoBmgJaA9DCKCkwAKYaG5AlIaUUpRoFUvyaBZHQKHoY3AmAsl1fZQoaAZoCWgPQwhBuW3fow9yQJSGlFKUaBVNHgFoFkdAoeitn/T9bXV9lChoBmgJaA9DCFvOpbiqOnFAlIaUUpRoFUvpaBZHQKHotH8TBZZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 372,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
myModel_LunarLander_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6e9acc0d20aea789eabe2f418f6f7c1c100d9a4c25c7a9f9c1652326a019a45
|
3 |
+
size 84893
|
myModel_LunarLander_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08c311c05b89e574a7ee509f7e70daf3ca37e19dcd6f3d88eb8b9595ef19fe4c
|
3 |
+
size 43201
|
myModel_LunarLander_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
myModel_LunarLander_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b900c99ed8b27c76f84d982e398534951bd76e2b43241e31a0d82773116d2ac
|
3 |
+
size 220419
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 270.8242764732631, "std_reward": 17.82188887259743, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T04:36:00.580716"}
|