--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_9_0 metrics: - wer model-index: - name: cv9-special-batch8-small-concat-Fleur-Norm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_9_0 type: common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 12.003680699332874 --- # cv9-special-batch8-small-concat-Fleur-Norm This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_9_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2567 - Wer: 12.0037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2878 | 0.72 | 1000 | 0.2612 | 14.8930 | | 0.1133 | 1.43 | 2000 | 0.2420 | 12.9101 | | 0.0512 | 2.15 | 3000 | 0.2399 | 12.2107 | | 0.0389 | 2.86 | 4000 | 0.2449 | 11.9669 | | 0.0161 | 3.58 | 5000 | 0.2567 | 12.0037 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3