--- license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - yt metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: yt id type: yt metrics: - name: Wer type: wer value: 48.22644445885481 --- # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the yt id dataset. It achieves the following results on the evaluation set: - Loss: 0.7390 - Wer: 48.2264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.0296 | 0.09 | 1000 | 0.9364 | 69.1330 | | 0.8092 | 0.17 | 2000 | 0.8503 | 59.1401 | | 0.9109 | 0.26 | 3000 | 0.8034 | 50.4247 | | 0.7291 | 0.34 | 4000 | 0.7616 | 48.3821 | | 0.7631 | 0.43 | 5000 | 0.7390 | 48.2264 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3