ppo-LunarLander-v2 / config.json
TheSupremeTaco's picture
Upload PPO LunarLander-v2 trained agent
fb5fa18
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f48eb7285e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48eb728670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f48eb728700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f48eb728790>", "_build": "<function ActorCriticPolicy._build at 0x7f48eb728820>", "forward": "<function ActorCriticPolicy.forward at 0x7f48eb7288b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f48eb728940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f48eb7289d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f48eb728a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f48eb728af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48eb728b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f48eb728c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f48f7f52780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687898178497172113, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADa5pz6gR0k/8mlLvR4dqr5m+V4+os2mvQAAAAAAAAAADaaTPUjJkLpXzTy3JPIasrWx6jpQ/Vo2AACAPwAAgD8zwzE8XPsuuqKJqTkzfvOzwwx6uq34xLgAAIA/AACAP6bAlj5t1N0+bBE2vobYor6GnDU+0sitvQAAAAAAAAAAplCTvSlQSLrmSqs7B+UgNmATWLppgRU1AACAPwAAgD/gxYo+2tOLPsKJlL68bJK+QYvkvDDv670AAAAAAAAAADNxFb0UsKu6rh49ujElRzZO/pI5jltYOQAAgD8AAIA/DX63vZZWSD8Msj491NeHvoXc3DvKVRe8AAAAAAAAAAAA+js8w5F/uqZ2tTsTTZ82IGfCOt4F0LoAAIA/AACAP2b9qjwf1Z25NdfquNuwL7Y0zZ079B8LOAAAgD8AAIA/gGpevVrugT/v6aS8+v3RvrvNvL2bQn28AAAAAAAAAADNFgQ+pIJSu8gXzjrncBi4ksV5vCY2ALoAAIA/AACAP6ZAjL3DqXC627JUujoAXbX7oYA6lnnGNAAAgD8AAIA/ZoJuva6/urpC4us5M8CPPCJGwjsomXm9AACAPwAAgD+meMG94QSGut46tjr8cZQ1K0i7OqVK1LkAAIA/AACAP+bSEb1Kkh8+rpN5vBGg273JW4w9GnIRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGE12NedCmeMAWyUTegDjAF0lEdAkRlN7BwdbXV9lChoBkdAZR2EmICU5mgHTegDaAhHQJEa2q3mV7h1fZQoaAZHQGT6ShrWRRxoB03oA2gIR0CRHlyi22G7dX2UKGgGR0Bi4ZTER8MNaAdN6ANoCEdAkR9srZrYXnV9lChoBkdAQHIXMyJsPGgHS9poCEdAkSE/6O5rg3V9lChoBkdAZWUe2d/ax2gHTegDaAhHQJEkAkHD7651fZQoaAZHQGIvpyhi9ZloB03oA2gIR0CRJDrl/6O6dX2UKGgGR0BH4QZ4wAU+aAdL0GgIR0CRJfz/6wdKdX2UKGgGR0Bjpas0YTCcaAdN6ANoCEdAkSn97KJVKnV9lChoBkdAY2Ilk6Lfk2gHTegDaAhHQJEsCamXPZ91fZQoaAZHQF3jVn27FsJoB03oA2gIR0CRQ2KekHlfdX2UKGgGR0BhR+J53TuwaAdN6ANoCEdAkUd9US7GvXV9lChoBkdAY6qAyVObiWgHTegDaAhHQJFdc42jwhJ1fZQoaAZHQGPacKohpxpoB03oA2gIR0CRXi0ZFXq8dX2UKGgGR0BeqVWCEpRXaAdN6ANoCEdAkV977XQMQXV9lChoBkdAYXRllK9PDmgHTegDaAhHQJFhYETxoZh1fZQoaAZHQGOd8ZUDMeRoB03oA2gIR0CRa1HOryUcdX2UKGgGR0BhCh42S+xoaAdN6ANoCEdAkWzYVymygXV9lChoBkdAYoBa7EpAlmgHTegDaAhHQJFvb5YYBNp1fZQoaAZHQGTtSQHRkVhoB03oA2gIR0CRcEI7eVLSdX2UKGgGR0Bjg2wTufEoaAdN6ANoCEdAkXJEornTzHV9lChoBkdAZZu6Mir1d2gHTegDaAhHQJF1Sij+Jgt1fZQoaAZHQGC6/ChvitJoB03oA2gIR0CRdYNp/PPcdX2UKGgGR0Bh8R2W6bvxaAdN6ANoCEdAkXdTh5xBFHV9lChoBkdAY6sjBVMmGGgHTegDaAhHQJF7HTiKiwl1fZQoaAZHQGAu6G5+YtxoB03oA2gIR0CRfQH8TBZZdX2UKGgGR0BIz+Vs1sLwaAdNDAFoCEdAkYMoHHFPznV9lChoBkdAUdvmp2ll9WgHTQMBaAhHQJGFe1rqMWJ1fZQoaAZHQGTdcu8K5TZoB03oA2gIR0CRla33pOerdX2UKGgGR0Blg7Fl05lwaAdN6ANoCEdAkZkLTx5LRXV9lChoBkdAYxvgvUSZjWgHTegDaAhHQJGZ1GAkLQZ1fZQoaAZHQGRq2WIGhVVoB03oA2gIR0CRmmeA/cFhdX2UKGgGR0BlPWjdpItlaAdN6ANoCEdAkatIixFAmnV9lChoBkdAYQm7nPmgamgHTegDaAhHQJGs1ciW3Sd1fZQoaAZHQGP674i5d4VoB03oA2gIR0CRtWmhM8HOdX2UKGgGR0BmuR5kbxViaAdN6ANoCEdAkbbG0Re1KHV9lChoBkdAZG93PiT+vWgHTegDaAhHQJG5AU21lXl1fZQoaAZHQGYtf7JnxrloB03oA2gIR0CRubqPwNLEdX2UKGgGR0BaktGiHqNZaAdN6ANoCEdAkbuXqu8sc3V9lChoBkdAZmyEA5q/NGgHTegDaAhHQJG/2AXl8w51fZQoaAZHQGU7hikO7QNoB03oA2gIR0CRyHRe1KGtdX2UKGgGR0BkAUQwsXizaAdN6ANoCEdAkcuEYbbUPXV9lChoBkdAYtlAsTWXkmgHTegDaAhHQJHSxXU6PsB1fZQoaAZHQF8U5DJEH+toB03oA2gIR0CR1Id8iOebdX2UKGgGR0BlrBBVuJk5aAdN6ANoCEdAkeMIvJzT4XV9lChoBkdAZrS5Yoy9EmgHTegDaAhHQJHm7nzQNTd1fZQoaAZHQGQrdBKL879oB03oA2gIR0CR5+AEt/WldX2UKGgGR0Bjl/ysjmjkaAdN6ANoCEdAkeiX6InBtXV9lChoBkdAY/U/7iyY5WgHTegDaAhHQJHp0lF+d9V1fZQoaAZHQGEs7muDBdloB03oA2gIR0CR/WlijL0SdX2UKGgGR0BmFXHvMKTjaAdN6ANoCEdAkgrRlDneSHV9lChoBkdAY+606YE4emgHTegDaAhHQJIMZWilBQh1fZQoaAZHQGi8hAfMfRxoB03oA2gIR0CSDv87ZFoddX2UKGgGR0Bjr6b6P8yfaAdN6ANoCEdAkg/dlNDc/XV9lChoBkdAZJZ2exwAEWgHTegDaAhHQJIR2eQMhHN1fZQoaAZHQGRe5flZHNJoB03oA2gIR0CSFO7cwg1WdX2UKGgGR0BgllSuQp4KaAdN6ANoCEdAkhrWm+Cbt3V9lChoBkdAYqOXdj5KvmgHTegDaAhHQJIc+EXcgyN1fZQoaAZHQEVJuyeI2wVoB00uAWgIR0CSIC5hScbzdX2UKGgGR0BiMg+Sr5qNaAdN6ANoCEdAkiNILG7z1HV9lChoBkdAYTaKk2xY72gHTegDaAhHQJIk9NqQA+91fZQoaAZHQGLUzch1TzdoB03oA2gIR0CSMbYRujyndX2UKGgGR0Bodrjin5zpaAdN6ANoCEdAkja9PUKArnV9lChoBkdAZjI+g13t8mgHTegDaAhHQJI35Htnf2t1fZQoaAZHQGQrS/TLGJhoB03oA2gIR0CSONOXVsk6dX2UKGgGR0BlDl34bjtHaAdN6ANoCEdAkjp9tl7MPnV9lChoBkdAYSencclw+GgHTegDaAhHQJJR0pqh11Z1fZQoaAZHQGFXwd8zAN5oB03oA2gIR0CSXfIk7fYSdX2UKGgGR0BjN4XZXdTHaAdN6ANoCEdAkl94Jmdy1nV9lChoBkdAYr7iLl3hXWgHTegDaAhHQJJiCZPVNHp1fZQoaAZHQGBzfTCtRvZoB03oA2gIR0CSZOsvqTr3dX2UKGgGR0BhMMkUsWfsaAdN6ANoCEdAkmg8IVuaW3V9lChoBkdAZLy03Ov+wWgHTegDaAhHQJJvkODrZ8N1fZQoaAZHQGMn/bblA/toB03oA2gIR0CScqB+nZTRdX2UKGgGR0BlkbtE5QxfaAdN6ANoCEdAkncanBLwnnV9lChoBkdAYhgoS+QEIWgHTegDaAhHQJJ7gXqJMxp1fZQoaAZHQGcXhMJx//hoB03oA2gIR0CSfe2ycCo1dX2UKGgGR0BcBfE87p3YaAdN6ANoCEdAkoqaGUOd5XV9lChoBkdAYPS+xnnMdWgHTegDaAhHQJKOdMFlkH51fZQoaAZHQF1PmUW2w3ZoB03oA2gIR0CSj2L5AQg+dX2UKGgGR0BgVSoKlYU4aAdN6ANoCEdAkpATVUdaMnV9lChoBkdAYtGAJb+tKmgHTegDaAhHQJKRSyprDZV1fZQoaAZHQGCKihWYF7loB03oA2gIR0CSkzhy8zyjdX2UKGgGR0BjgyI7/4qPaAdN6ANoCEdAkq/AyqMm4XV9lChoBkdAZX2i0OVgQmgHTegDaAhHQJKyHkGRmsh1fZQoaAZHQGGLSoGY8dRoB03oA2gIR0CStfr5IpYtdX2UKGgGR0BmqKGzru6VaAdN6ANoCEdAkrnU6cRUWHV9lChoBkdAZrSInBtUGWgHTegDaAhHQJK9S0QbuMN1fZQoaAZHQGGnBsQ/X5FoB03oA2gIR0CSw9pTMqz7dX2UKGgGR0BmJ3D+BH09aAdN6ANoCEdAksZDTSb6QHV9lChoBkdAYsqq5sj3VWgHTegDaAhHQJLJ+9ytFKF1fZQoaAZHQGTnEQoTfzloB03oA2gIR0CSzZ0yxiXqdX2UKGgGR0BjFzrcCYCyaAdN6ANoCEdAks9hY3eenXV9lChoBkdAHbugHu7YkGgHS8doCEdAktY5PykKu3V9lChoBkdAXGPLwF1SwWgHTegDaAhHQJLc+gSOBDp1fZQoaAZHQGX83qqwQlNoB03oA2gIR0CS4Nit7rs0dX2UKGgGR0BkjWtbLU1AaAdN6ANoCEdAkuIOCTUy6HV9lChoBkdAYdTaW5YozGgHTegDaAhHQJLi9+8XenB1fZQoaAZHQGaYp/oaDPJoB03oA2gIR0CS5IAVfu1GdX2UKGgGR0BfLxlxwQ18aAdN6ANoCEdAkubp7b+LnHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}