File size: 3,757 Bytes
f2fd7ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
import soundfile as sf
import gradio as gr
import scipy.io.wavfile as wav
import numpy as np
import wave
from datasets import load_dataset, Audio, config
from IPython.display import Audio

# Load the TTS model from the Hugging Face Hub
checkpoint = "TheUpperCaseGuy/Guy-Urdu-TTS"  # Replace with your actual model name
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
tokenizer = processor.tokenizer
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")


# Buckwalter to Unicode mapping
buck2uni = {
            u"\u0627":"A",
            u"\u0627":"A",
            u"\u0675":"A",
            u"\u0673":"A",
            u"\u0630":"A",
            u"\u0622":"AA",
            u"\u0628":"B",
            u"\u067E":"P",
            u"\u062A":"T",
            u"\u0637":"T",
            u"\u0679":"T",
            u"\u062C":"J",
            u"\u0633":"S",
            u"\u062B":"S",
            u"\u0635":"S",
            u"\u0686":"CH",
            u"\u062D":"H",
            u"\u0647":"H",
            u"\u0629":"H",
            u"\u06DF":"H",
            u"\u062E":"KH",
            u"\u062F":"D",
            u"\u0688":"D",
            u"\u0630":"Z",
            u"\u0632":"Z",
            u"\u0636":"Z",
            u"\u0638":"Z",
            u"\u068E":"Z",
            u"\u0631":"R",
            u"\u0691":"R",
            u"\u0634":"SH",
            u"\u063A":"GH",
            u"\u0641":"F",
            u"\u06A9":"K",
            u"\u0642":"K",
            u"\u06AF":"G",
            u"\u0644":"L",
            u"\u0645":"M",
            u"\u0646":"N",
            u"\u06BA":"N",
            u"\u0648":"O",
            u"\u0649":"Y",
            u"\u0626":"Y",
            u"\u06CC":"Y",
            u"\u06D2":"E",
            u"\u06C1":"H",
            u"\u064A":"E"  ,
            u"\u06C2":"AH"  ,
            u"\u06BE":"H"  ,
            u"\u0639":"A"  ,
            u"\u0643":"K" ,
            u"\u0621":"A",
            u"\u0624":"O",
            u"\u060C":"" #seperator ulta comma
}

def transString(string, reverse=0):
    """Given a Unicode string, transliterate into Buckwalter. To go from
    Buckwalter back to Unicode, set reverse=1"""
    for k, v in buck2uni.items():
        if not reverse:
            string = string.replace(k, v)
        else:
            string = string.replace(v, k)
    return string


def generate_audio(text):
    # Convert input text to Roman Urdu
    roman_urdu = transString(text)

    # Tokenize the input text
    inputs = processor(text=roman_urdu, return_tensors="pt", type = "numpy")

    # Generate audio from the SpeechT5 model
    speaker_embeddings = torch.tensor(np.load("speaker_embeddings.npy"))
    speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)

    return speech

def text_to_speech(text):
    # Generate audio
    audio_output = generate_audio(text)

    output_path = "output.wav"
    sf.write(output_path, audio_output.numpy(), 16000, "PCM_16")

    return output_path


examples = [
    ['میں ٹھیک ہوں، شکریہ! اور آپ؟'],
    ['آپ سَے ملکر خوشی ہوًی!'],
]


interface = gr.Interface(fn=text_to_speech, inputs="text", outputs="audio", verbose = True, title="Urdu TTS", 
                         description = "A simple Urdu Text to Speech Application. It is not by any means perfect and will not work for all text. You can sometimes expect it to generate random noise on an input of your choice. Right now it works successfully on very basic urdu text, such the ones in the example.", examples = examples)
interface.launch()