Upload PPO BipedalWalker trained model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-bipedalwalker-v3.zip +3 -0
- ppo-bipedalwalker-v3/_stable_baselines3_version +1 -0
- ppo-bipedalwalker-v3/data +96 -0
- ppo-bipedalwalker-v3/policy.optimizer.pth +3 -0
- ppo-bipedalwalker-v3/policy.pth +3 -0
- ppo-bipedalwalker-v3/pytorch_variables.pth +3 -0
- ppo-bipedalwalker-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 279.37 +/- 66.42
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: BipedalWalker-v3
|
20 |
+
type: BipedalWalker-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x158519c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x158519ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x158519d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x158519dc0>", "_build": "<function ActorCriticPolicy._build at 0x158519e50>", "forward": "<function ActorCriticPolicy.forward at 0x158519ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x158519f70>", "_predict": "<function ActorCriticPolicy._predict at 0x158520040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1585200d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x158520160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1585201f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x15851cec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 600000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651839607.906576, "learning_rate": 0.0003, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.401984, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR6ta0lEGckCUhpRSlIwBbJRNfQSMAXSUR0BuSYN/e+EidX2UKGgGaAloD0MI2safqGyxcUCUhpRSlGgVTdgEaBZHQG5TbBGhEjR1fZQoaAZoCWgPQwiUg9kEmLxxQJSGlFKUaBVNtgRoFkdAbmjxGUfPonV9lChoBmgJaA9DCHk+A+rNSA7AlIaUUpRoFU3dAWgWR0BubMyHmA9WdX2UKGgGaAloD0MIhq5EoDr4cUCUhpRSlGgVTaQEaBZHQG6CbWEsasJ1fZQoaAZoCWgPQwgaho+IKY5xQJSGlFKUaBVN3ARoFkdAboxO/tY0VXV9lChoBmgJaA9DCIQOuoQDyXFAlIaUUpRoFU2oBGgWR0Buol9Wp6yCdX2UKGgGaAloD0MIDM11GulpcUCUhpRSlGgVTScFaBZHQG65Oy3Td+J1fZQoaAZoCWgPQwi0Vx8PPd5xQJSGlFKUaBVNpwRoFkdAbsKm1IAfdXV9lChoBmgJaA9DCMDo8uZwEUtAlIaUUpRoFU2pAmgWR0Bu1CErXlKcdX2UKGgGaAloD0MI6L8Hrx3tcUCUhpRSlGgVTaUEaBZHQG7dh1DBuXN1fZQoaAZoCWgPQwg5ZAPp4v5xQJSGlFKUaBVNfgRoFkdAbvXwZOzpo3V9lChoBmgJaA9DCJRoyeOp1XFAlIaUUpRoFU3SBGgWR0BvAJx3mmtRdX2UKGgGaAloD0MI+PwwQnhJVECUhpRSlGgVTUEDaBZHQG8UJz90ihZ1fZQoaAZoCWgPQwgjvD0IwfNxQJSGlFKUaBVNoARoFkdAbx3jLB9Cu3V9lChoBmgJaA9DCLh3DfrSaVpAlIaUUpRoFU1eA2gWR0BvNNN1yNn5dX2UKGgGaAloD0MIh29h3XioVsCUhpRSlGgVS4ZoFkdAbzXrPdEb53V9lChoBmgJaA9DCLpNuFem/HFAlIaUUpRoFU2EBGgWR0BvP07ZFocrdX2UKGgGaAloD0MIzas6qwXOcUCUhpRSlGgVTbkEaBZHQG9WexfOUt91fZQoaAZoCWgPQwi5wyYyc6E5QJSGlFKUaBVNXQJoFkdAb1t889wFT3V9lChoBmgJaA9DCO7sKw+S4HFAlIaUUpRoFU2nBGgWR0Bvcm+0w8GLdX2UKGgGaAloD0MIWDz1SEO3cUCUhpRSlGgVTc8EaBZHQG98Z2hZha11fZQoaAZoCWgPQwiKP4o6M/9xQJSGlFKUaBVNewRoFkdAb5SbuMMqjXV9lChoBmgJaA9DCPFG5pG/LnJAlIaUUpRoFU1sBGgWR0BvqvnGKhtcdX2UKGgGaAloD0MIv0UnS624ZUCUhpRSlGgVTWgEaBZHQG+0OPvKEFp1fZQoaAZoCWgPQwibyw2GOlZhQJSGlFKUaBVNAQRoFkdAb8mrjo6jnHV9lChoBmgJaA9DCMmOjUA8IXJAlIaUUpRoFU1oBGgWR0Bv0u4I8hcJdX2UKGgGaAloD0MIXHLcKd0CckCUhpRSlGgVTXgEaBZHQG/qnwXqJMx1fZQoaAZoCWgPQwjU1ohgnCByQJSGlFKUaBVNVwRoFkdAb/Occ2itaXV9lChoBmgJaA9DCFX2XRH8TXJAlIaUUpRoFU1CBGgWR0BwBaHGjsUqdX2UKGgGaAloD0MI9gmgGJm3cUCUhpRSlGgVTdAEaBZHQHAKqpcX3xp1fZQoaAZoCWgPQwijdr8KcBVyQJSGlFKUaBVNVARoFkdAcBUrT6SDAnV9lChoBmgJaA9DCDTaqiSyXzBAlIaUUpRoFU3zAWgWR0BwFyu5jH4odX2UKGgGaAloD0MI/S5szZbCcUCUhpRSlGgVTcQEaBZHQHAiRW5paid1fZQoaAZoCWgPQwjjF15J8jJWQJSGlFKUaBVNSANoFkdAcCWfGuLaVXV9lChoBmgJaA9DCEioGVJFT0PAlIaUUpRoFU1bAWgWR0BwJwGFBY3edX2UKGgGaAloD0MIzGJi83H7cUCUhpRSlGgVTXwEaBZHQHAx2ipNsWR1fZQoaAZoCWgPQwhpigCn96FxQJSGlFKUaBVNzgRoFkdAcD0UVi4J/3V9lChoBmgJaA9DCL72zJKAanFAlIaUUpRoFU0PBWgWR0BwQkLApKBedX2UKGgGaAloD0MIsyYW+ErdcUCUhpRSlGgVTZcEaBZHQHBNJbQkX1t1fZQoaAZoCWgPQwiHvyZr1PBxQJSGlFKUaBVNgQRoFkdAcFHXKr7wa3V9lChoBmgJaA9DCPSltz8XRUlAlIaUUpRoFU2FAmgWR0BwXI/lhgE2dX2UKGgGaAloD0MIFXE6yVYrMcCUhpRSlGgVTQoCaBZHQHBerTlT3qR1fZQoaAZoCWgPQwifPCzUmj47QJSGlFKUaBVNPAJoFkdAcGEFnZkCm3V9lChoBmgJaA9DCGeZRSi2u3FAlIaUUpRoFU22BGgWR0Bwbh2Rq46PdX2UKGgGaAloD0MIFva0wx/wcUCUhpRSlGgVTYEEaBZHQHBy5m/WUbF1fZQoaAZoCWgPQwgaprbUgRNyQJSGlFKUaBVNcQRoFkdAcIAtDD0lJHV9lChoBmgJaA9DCHy1ozhH/05AlIaUUpRoFU3fAmgWR0Bwg68Zk079dX2UKGgGaAloD0MIVaAWg4dCV0CUhpRSlGgVTY8DaBZHQHCP3yEtdzJ1fZQoaAZoCWgPQwirzJTWX9RxQJSGlFKUaBVNtQRoFkdAcJTB7eEZi3V9lChoBmgJaA9DCMRcUrXd1DfAlIaUUpRoFU22AWgWR0BwloDLbHp9dX2UKGgGaAloD0MIm8sNhjqDXcCUhpRSlGgVS2xoFkdAcJbwQ176YXV9lChoBmgJaA9DCAezCTAs3nFAlIaUUpRoFU2rBGgWR0Bwo+JuVHFxdX2UKGgGaAloD0MIrvIEwk4NckCUhpRSlGgVTXIEaBZHQHCxExEfDDV1fZQoaAZoCWgPQwihL739uS5cwJSGlFKUaBVLPWgWR0BwsVckdFOPdX2UKGgGaAloD0MIysABLd3ncUCUhpRSlGgVTasEaBZHQHC2NIsiB5J1fZQoaAZoCWgPQwjOGVHaG/9bwJSGlFKUaBVLYWgWR0Bwtpotcv/SdX2UKGgGaAloD0MIXdxGA3gNckCUhpRSlGgVTYsEaBZHQHDED238XN11fZQoaAZoCWgPQwjBHD1+LwByQJSGlFKUaBVNfQRoFkdAcMnk1uR9w3V9lChoBmgJaA9DCAznGmaoJXJAlIaUUpRoFU1oBGgWR0Bw2isFMZgpdX2UKGgGaAloD0MIQx1WuKUickCUhpRSlGgVTW8EaBZHQHDmKeTV2A51fZQoaAZoCWgPQwjzrQ/rjaJdwJSGlFKUaBVLW2gWR0Bw5oqLCN0edX2UKGgGaAloD0MIVTGVfoLmcUCUhpRSlGgVTbAEaBZHQHDrX5zo2XN1fZQoaAZoCWgPQwgIILWJkxxyQJSGlFKUaBVNhQRoFkdAcPdD2rXDnHV9lChoBmgJaA9DCIyGjEfpOnJAlIaUUpRoFU1PBGgWR0Bw+7rZ8KG+dX2UKGgGaAloD0MI7BLVW8PYcUCUhpRSlGgVTawEaBZHQHEHt1loUSJ1fZQoaAZoCWgPQwiT4Xg+w1ZyQJSGlFKUaBVNMwRoFkdAcQwe9i+cpnV9lChoBmgJaA9DCFg33h2ZQXJAlIaUUpRoFU03BGgWR0BxF90CA+Y/dX2UKGgGaAloD0MIIGCt2jVMYcCUhpRSlGgVS81oFkdAcRitOEdvKnV9lChoBmgJaA9DCDW214Je9XFAlIaUUpRoFU2aBGgWR0BxJlAB1cMWdX2UKGgGaAloD0MI0CaHTzorSkCUhpRSlGgVTcwCaBZHQHEpM+A3DN11fZQoaAZoCWgPQwgkXwmkxJdRwJSGlFKUaBVNDAFoFkdAcSpAWi1zAHV9lChoBmgJaA9DCFtAaD18W0jAlIaUUpRoFU1XAWgWR0BxK53aBZp0dX2UKGgGaAloD0MI4gFlUy7GcUCUhpRSlGgVTdIEaBZHQHE4eCPIXCV1fZQoaAZoCWgPQwhJ93MKMuxxQJSGlFKUaBVNjQRoFkdAcT0joZAIIHV9lChoBmgJaA9DCPPixFc7Oj3AlIaUUpRoFU2bAWgWR0BxRpIg/1QJdX2UKGgGaAloD0MIa54j8l0SOUCUhpRSlGgVTVMCaBZHQHFI9aY/mkp1fZQoaAZoCWgPQwiuSiL7IC5yQJSGlFKUaBVNYARoFkdAcU1zv7WNFXV9lChoBmgJaA9DCF5jl6ieIXJAlIaUUpRoFU1DBGgWR0BxWP3Zf2K3dX2UKGgGaAloD0MIAIv8+qEdckCUhpRSlGgVTX4EaBZHQHFlhqXWvr51fZQoaAZoCWgPQwjk2HqGcAJyQJSGlFKUaBVNXgRoFkdAcWoCBPKuCHV9lChoBmgJaA9DCMYzaOhfDXJAlIaUUpRoFU2aBGgWR0Bxdv0se4kNdX2UKGgGaAloD0MI/plBfGB5WMCUhpRSlGgVS3toFkdAcXd99tuUEHV9lChoBmgJaA9DCI8X0uEhpFPAlIaUUpRoFUvbaBZHQHF4YbGWD6F1fZQoaAZoCWgPQwhJSKRt/NNxQJSGlFKUaBVNsARoFkdAcX0uxKQJX3V9lChoBmgJaA9DCOkN95GbEHJAlIaUUpRoFU1xBGgWR0BxiSQcPvrodX2UKGgGaAloD0MI+FEN+711ckCUhpRSlGgVTSAEaBZHQHGNmAwwj+t1fZQoaAZoCWgPQwgIISBfQlVcQJSGlFKUaBVNIARoFkdAcZjPfbblBHV9lChoBmgJaA9DCGHj+nd92lNAlIaUUpRoFU1bA2gWR0BxnDgMtseodX2UKGgGaAloD0MIEvbtJCLLcUCUhpRSlGgVTcUEaBZHQHGnwqur6tV1fZQoaAZoCWgPQwjltn2P+q5YwJSGlFKUaBVLlWgWR0BxqFkEs8PndX2UKGgGaAloD0MI598u+3U/OECUhpRSlGgVTUMCaBZHQHGqptBOYY11fZQoaAZoCWgPQwj/lZUmZQxyQJSGlFKUaBVNhwRoFkdAcbX1uBMBZXV9lChoBmgJaA9DCIMUPIUcInJAlIaUUpRoFU1lBGgWR0BxupTcZccEdX2UKGgGaAloD0MIfqzgtyGaXsCUhpRSlGgVS3poFkdAccIUwi7kGXV9lChoBmgJaA9DCJZBtcGJT3JAlIaUUpRoFU1FBGgWR0Bxxn5FgDzRdX2UKGgGaAloD0MIcTjzqzlkUcCUhpRSlGgVS+9oFkdAccdxCpm29nV9lChoBmgJaA9DCJEr9SwIVRDAlIaUUpRoFU3EAWgWR0BxyT7di2DydX2UKGgGaAloD0MIWdqpuRxfckCUhpRSlGgVTUEEaBZHQHHUT9GZuyh1fZQoaAZoCWgPQwhYcD/ggUFyQJSGlFKUaBVNVgRoFkdAcdjNATqSo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3410, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
ppo-bipedalwalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f10caa64c642f1fdec2c2010f7c3850d942436382676149099d8649a72965588
|
3 |
+
size 169406
|
ppo-bipedalwalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-bipedalwalker-v3/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x158519c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x158519ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x158519d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x158519dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x158519e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x158519ee0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x158519f70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x158520040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1585200d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x158520160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x1585201f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x15851cec0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
24
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
4
|
42 |
+
],
|
43 |
+
"low": "[-1. -1. -1. -1.]",
|
44 |
+
"high": "[1. 1. 1. 1.]",
|
45 |
+
"bounded_below": "[ True True True True]",
|
46 |
+
"bounded_above": "[ True True True True]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 600000,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": null,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1651839607.906576,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": "logs",
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": null,
|
68 |
+
"_episode_num": 0,
|
69 |
+
"use_sde": false,
|
70 |
+
"sde_sample_freq": -1,
|
71 |
+
"_current_progress_remaining": 0.401984,
|
72 |
+
"ep_info_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR6ta0lEGckCUhpRSlIwBbJRNfQSMAXSUR0BuSYN/e+EidX2UKGgGaAloD0MI2safqGyxcUCUhpRSlGgVTdgEaBZHQG5TbBGhEjR1fZQoaAZoCWgPQwiUg9kEmLxxQJSGlFKUaBVNtgRoFkdAbmjxGUfPonV9lChoBmgJaA9DCHk+A+rNSA7AlIaUUpRoFU3dAWgWR0BubMyHmA9WdX2UKGgGaAloD0MIhq5EoDr4cUCUhpRSlGgVTaQEaBZHQG6CbWEsasJ1fZQoaAZoCWgPQwgaho+IKY5xQJSGlFKUaBVN3ARoFkdAboxO/tY0VXV9lChoBmgJaA9DCIQOuoQDyXFAlIaUUpRoFU2oBGgWR0Buol9Wp6yCdX2UKGgGaAloD0MIDM11GulpcUCUhpRSlGgVTScFaBZHQG65Oy3Td+J1fZQoaAZoCWgPQwi0Vx8PPd5xQJSGlFKUaBVNpwRoFkdAbsKm1IAfdXV9lChoBmgJaA9DCMDo8uZwEUtAlIaUUpRoFU2pAmgWR0Bu1CErXlKcdX2UKGgGaAloD0MI6L8Hrx3tcUCUhpRSlGgVTaUEaBZHQG7dh1DBuXN1fZQoaAZoCWgPQwg5ZAPp4v5xQJSGlFKUaBVNfgRoFkdAbvXwZOzpo3V9lChoBmgJaA9DCJRoyeOp1XFAlIaUUpRoFU3SBGgWR0BvAJx3mmtRdX2UKGgGaAloD0MI+PwwQnhJVECUhpRSlGgVTUEDaBZHQG8UJz90ihZ1fZQoaAZoCWgPQwgjvD0IwfNxQJSGlFKUaBVNoARoFkdAbx3jLB9Cu3V9lChoBmgJaA9DCLh3DfrSaVpAlIaUUpRoFU1eA2gWR0BvNNN1yNn5dX2UKGgGaAloD0MIh29h3XioVsCUhpRSlGgVS4ZoFkdAbzXrPdEb53V9lChoBmgJaA9DCLpNuFem/HFAlIaUUpRoFU2EBGgWR0BvP07ZFocrdX2UKGgGaAloD0MIzas6qwXOcUCUhpRSlGgVTbkEaBZHQG9WexfOUt91fZQoaAZoCWgPQwi5wyYyc6E5QJSGlFKUaBVNXQJoFkdAb1t889wFT3V9lChoBmgJaA9DCO7sKw+S4HFAlIaUUpRoFU2nBGgWR0Bvcm+0w8GLdX2UKGgGaAloD0MIWDz1SEO3cUCUhpRSlGgVTc8EaBZHQG98Z2hZha11fZQoaAZoCWgPQwiKP4o6M/9xQJSGlFKUaBVNewRoFkdAb5SbuMMqjXV9lChoBmgJaA9DCPFG5pG/LnJAlIaUUpRoFU1sBGgWR0BvqvnGKhtcdX2UKGgGaAloD0MIv0UnS624ZUCUhpRSlGgVTWgEaBZHQG+0OPvKEFp1fZQoaAZoCWgPQwibyw2GOlZhQJSGlFKUaBVNAQRoFkdAb8mrjo6jnHV9lChoBmgJaA9DCMmOjUA8IXJAlIaUUpRoFU1oBGgWR0Bv0u4I8hcJdX2UKGgGaAloD0MIXHLcKd0CckCUhpRSlGgVTXgEaBZHQG/qnwXqJMx1fZQoaAZoCWgPQwjU1ohgnCByQJSGlFKUaBVNVwRoFkdAb/Occ2itaXV9lChoBmgJaA9DCFX2XRH8TXJAlIaUUpRoFU1CBGgWR0BwBaHGjsUqdX2UKGgGaAloD0MI9gmgGJm3cUCUhpRSlGgVTdAEaBZHQHAKqpcX3xp1fZQoaAZoCWgPQwijdr8KcBVyQJSGlFKUaBVNVARoFkdAcBUrT6SDAnV9lChoBmgJaA9DCDTaqiSyXzBAlIaUUpRoFU3zAWgWR0BwFyu5jH4odX2UKGgGaAloD0MI/S5szZbCcUCUhpRSlGgVTcQEaBZHQHAiRW5paid1fZQoaAZoCWgPQwjjF15J8jJWQJSGlFKUaBVNSANoFkdAcCWfGuLaVXV9lChoBmgJaA9DCEioGVJFT0PAlIaUUpRoFU1bAWgWR0BwJwGFBY3edX2UKGgGaAloD0MIzGJi83H7cUCUhpRSlGgVTXwEaBZHQHAx2ipNsWR1fZQoaAZoCWgPQwhpigCn96FxQJSGlFKUaBVNzgRoFkdAcD0UVi4J/3V9lChoBmgJaA9DCL72zJKAanFAlIaUUpRoFU0PBWgWR0BwQkLApKBedX2UKGgGaAloD0MIsyYW+ErdcUCUhpRSlGgVTZcEaBZHQHBNJbQkX1t1fZQoaAZoCWgPQwiHvyZr1PBxQJSGlFKUaBVNgQRoFkdAcFHXKr7wa3V9lChoBmgJaA9DCPSltz8XRUlAlIaUUpRoFU2FAmgWR0BwXI/lhgE2dX2UKGgGaAloD0MIFXE6yVYrMcCUhpRSlGgVTQoCaBZHQHBerTlT3qR1fZQoaAZoCWgPQwifPCzUmj47QJSGlFKUaBVNPAJoFkdAcGEFnZkCm3V9lChoBmgJaA9DCGeZRSi2u3FAlIaUUpRoFU22BGgWR0Bwbh2Rq46PdX2UKGgGaAloD0MIFva0wx/wcUCUhpRSlGgVTYEEaBZHQHBy5m/WUbF1fZQoaAZoCWgPQwgaprbUgRNyQJSGlFKUaBVNcQRoFkdAcIAtDD0lJHV9lChoBmgJaA9DCHy1ozhH/05AlIaUUpRoFU3fAmgWR0Bwg68Zk079dX2UKGgGaAloD0MIVaAWg4dCV0CUhpRSlGgVTY8DaBZHQHCP3yEtdzJ1fZQoaAZoCWgPQwirzJTWX9RxQJSGlFKUaBVNtQRoFkdAcJTB7eEZi3V9lChoBmgJaA9DCMRcUrXd1DfAlIaUUpRoFU22AWgWR0BwloDLbHp9dX2UKGgGaAloD0MIm8sNhjqDXcCUhpRSlGgVS2xoFkdAcJbwQ176YXV9lChoBmgJaA9DCAezCTAs3nFAlIaUUpRoFU2rBGgWR0Bwo+JuVHFxdX2UKGgGaAloD0MIrvIEwk4NckCUhpRSlGgVTXIEaBZHQHCxExEfDDV1fZQoaAZoCWgPQwihL739uS5cwJSGlFKUaBVLPWgWR0BwsVckdFOPdX2UKGgGaAloD0MIysABLd3ncUCUhpRSlGgVTasEaBZHQHC2NIsiB5J1fZQoaAZoCWgPQwjOGVHaG/9bwJSGlFKUaBVLYWgWR0Bwtpotcv/SdX2UKGgGaAloD0MIXdxGA3gNckCUhpRSlGgVTYsEaBZHQHDED238XN11fZQoaAZoCWgPQwjBHD1+LwByQJSGlFKUaBVNfQRoFkdAcMnk1uR9w3V9lChoBmgJaA9DCAznGmaoJXJAlIaUUpRoFU1oBGgWR0Bw2isFMZgpdX2UKGgGaAloD0MIQx1WuKUickCUhpRSlGgVTW8EaBZHQHDmKeTV2A51fZQoaAZoCWgPQwjzrQ/rjaJdwJSGlFKUaBVLW2gWR0Bw5oqLCN0edX2UKGgGaAloD0MIVTGVfoLmcUCUhpRSlGgVTbAEaBZHQHDrX5zo2XN1fZQoaAZoCWgPQwgIILWJkxxyQJSGlFKUaBVNhQRoFkdAcPdD2rXDnHV9lChoBmgJaA9DCIyGjEfpOnJAlIaUUpRoFU1PBGgWR0Bw+7rZ8KG+dX2UKGgGaAloD0MI7BLVW8PYcUCUhpRSlGgVTawEaBZHQHEHt1loUSJ1fZQoaAZoCWgPQwiT4Xg+w1ZyQJSGlFKUaBVNMwRoFkdAcQwe9i+cpnV9lChoBmgJaA9DCFg33h2ZQXJAlIaUUpRoFU03BGgWR0BxF90CA+Y/dX2UKGgGaAloD0MIIGCt2jVMYcCUhpRSlGgVS81oFkdAcRitOEdvKnV9lChoBmgJaA9DCDW214Je9XFAlIaUUpRoFU2aBGgWR0BxJlAB1cMWdX2UKGgGaAloD0MI0CaHTzorSkCUhpRSlGgVTcwCaBZHQHEpM+A3DN11fZQoaAZoCWgPQwgkXwmkxJdRwJSGlFKUaBVNDAFoFkdAcSpAWi1zAHV9lChoBmgJaA9DCFtAaD18W0jAlIaUUpRoFU1XAWgWR0BxK53aBZp0dX2UKGgGaAloD0MI4gFlUy7GcUCUhpRSlGgVTdIEaBZHQHE4eCPIXCV1fZQoaAZoCWgPQwhJ93MKMuxxQJSGlFKUaBVNjQRoFkdAcT0joZAIIHV9lChoBmgJaA9DCPPixFc7Oj3AlIaUUpRoFU2bAWgWR0BxRpIg/1QJdX2UKGgGaAloD0MIa54j8l0SOUCUhpRSlGgVTVMCaBZHQHFI9aY/mkp1fZQoaAZoCWgPQwiuSiL7IC5yQJSGlFKUaBVNYARoFkdAcU1zv7WNFXV9lChoBmgJaA9DCF5jl6ieIXJAlIaUUpRoFU1DBGgWR0BxWP3Zf2K3dX2UKGgGaAloD0MIAIv8+qEdckCUhpRSlGgVTX4EaBZHQHFlhqXWvr51fZQoaAZoCWgPQwjk2HqGcAJyQJSGlFKUaBVNXgRoFkdAcWoCBPKuCHV9lChoBmgJaA9DCMYzaOhfDXJAlIaUUpRoFU2aBGgWR0Bxdv0se4kNdX2UKGgGaAloD0MI/plBfGB5WMCUhpRSlGgVS3toFkdAcXd99tuUEHV9lChoBmgJaA9DCI8X0uEhpFPAlIaUUpRoFUvbaBZHQHF4YbGWD6F1fZQoaAZoCWgPQwhJSKRt/NNxQJSGlFKUaBVNsARoFkdAcX0uxKQJX3V9lChoBmgJaA9DCOkN95GbEHJAlIaUUpRoFU1xBGgWR0BxiSQcPvrodX2UKGgGaAloD0MI+FEN+711ckCUhpRSlGgVTSAEaBZHQHGNmAwwj+t1fZQoaAZoCWgPQwgIISBfQlVcQJSGlFKUaBVNIARoFkdAcZjPfbblBHV9lChoBmgJaA9DCGHj+nd92lNAlIaUUpRoFU1bA2gWR0BxnDgMtseodX2UKGgGaAloD0MIEvbtJCLLcUCUhpRSlGgVTcUEaBZHQHGnwqur6tV1fZQoaAZoCWgPQwjltn2P+q5YwJSGlFKUaBVLlWgWR0BxqFkEs8PndX2UKGgGaAloD0MI598u+3U/OECUhpRSlGgVTUMCaBZHQHGqptBOYY11fZQoaAZoCWgPQwj/lZUmZQxyQJSGlFKUaBVNhwRoFkdAcbX1uBMBZXV9lChoBmgJaA9DCIMUPIUcInJAlIaUUpRoFU1lBGgWR0BxupTcZccEdX2UKGgGaAloD0MIfqzgtyGaXsCUhpRSlGgVS3poFkdAccIUwi7kGXV9lChoBmgJaA9DCJZBtcGJT3JAlIaUUpRoFU1FBGgWR0Bxxn5FgDzRdX2UKGgGaAloD0MIcTjzqzlkUcCUhpRSlGgVS+9oFkdAccdxCpm29nV9lChoBmgJaA9DCJEr9SwIVRDAlIaUUpRoFU3EAWgWR0BxyT7di2DydX2UKGgGaAloD0MIWdqpuRxfckCUhpRSlGgVTUEEaBZHQHHUT9GZuyh1fZQoaAZoCWgPQwhYcD/ggUFyQJSGlFKUaBVNVgRoFkdAcdjNATqSo3VlLg=="
|
75 |
+
},
|
76 |
+
"ep_success_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
79 |
+
},
|
80 |
+
"_n_updates": 3410,
|
81 |
+
"n_steps": 2048,
|
82 |
+
"gamma": 0.99,
|
83 |
+
"gae_lambda": 0.95,
|
84 |
+
"ent_coef": 0.0,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 10,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-bipedalwalker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d46808ac7295afc0e7e5bcc1166af5d5214f41bd1abfb1f450fa7b981c6217e
|
3 |
+
size 101527
|
ppo-bipedalwalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a69013634aa840cb9fb79082b269d8f6ff78927be0afa86586997b67eafddca
|
3 |
+
size 51582
|
ppo-bipedalwalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-bipedalwalker-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000
|
2 |
+
Python: 3.9.12
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:148ad4cd38bfcd7830525f757fa4f9f5d43f53b2cc9b9d775ed5743459b39d20
|
3 |
+
size 868393
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 279.3747581157571, "std_reward": 66.4196709343912, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T20:32:52.668520"}
|