File size: 2,298 Bytes
8b01c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43f35be
8b01c9b
 
 
 
 
 
 
 
 
43f35be
 
8b01c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43f35be
 
 
 
 
 
 
 
 
 
8b01c9b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- vivos
metrics:
- wer
model-index:
- name: working
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: vivos
      type: vivos
      config: default
      split: None
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.4125911199469848
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# working

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7102
- Wer: 0.4126

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.3485        | 2.0   | 292  | 3.7183          | 1.0    |
| 3.4479        | 4.0   | 584  | 3.5977          | 1.0    |
| 2.948         | 6.0   | 876  | 1.7093          | 0.8420 |
| 1.2556        | 8.0   | 1168 | 1.0140          | 0.5846 |
| 0.9216        | 10.0  | 1460 | 0.8558          | 0.5142 |
| 0.7769        | 12.0  | 1752 | 0.7731          | 0.4643 |
| 0.6968        | 14.0  | 2044 | 0.7458          | 0.4394 |
| 0.6813        | 16.0  | 2336 | 0.7549          | 0.4385 |
| 0.5996        | 18.0  | 2628 | 0.7186          | 0.4128 |
| 0.572         | 20.0  | 2920 | 0.7102          | 0.4126 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1