File size: 2,298 Bytes
8b01c9b 43f35be 8b01c9b 43f35be 8b01c9b 43f35be 8b01c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- vivos
metrics:
- wer
model-index:
- name: working
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: vivos
type: vivos
config: default
split: None
args: default
metrics:
- name: Wer
type: wer
value: 0.4125911199469848
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# working
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7102
- Wer: 0.4126
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.3485 | 2.0 | 292 | 3.7183 | 1.0 |
| 3.4479 | 4.0 | 584 | 3.5977 | 1.0 |
| 2.948 | 6.0 | 876 | 1.7093 | 0.8420 |
| 1.2556 | 8.0 | 1168 | 1.0140 | 0.5846 |
| 0.9216 | 10.0 | 1460 | 0.8558 | 0.5142 |
| 0.7769 | 12.0 | 1752 | 0.7731 | 0.4643 |
| 0.6968 | 14.0 | 2044 | 0.7458 | 0.4394 |
| 0.6813 | 16.0 | 2336 | 0.7549 | 0.4385 |
| 0.5996 | 18.0 | 2628 | 0.7186 | 0.4128 |
| 0.572 | 20.0 | 2920 | 0.7102 | 0.4126 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|