|
import gradio as gr |
|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
|
|
data = { |
|
'event_id': [101, 102, 103, 104, 105], |
|
'title': ['Hiking Meetup', 'Book Club Discussion', 'Gardening Workshop', 'Coding Class', 'Yoga Session'], |
|
'description': ['Explore local trails', 'Discuss "The Great Gatsby"', 'Learn basic gardening', 'Python programming basics', 'Relaxing yoga practice'], |
|
'tags': ['hiking, nature, outdoors', 'books, literature, reading', 'gardening, plants, nature', 'coding, programming, python', 'yoga, fitness, relaxation'] |
|
} |
|
events_df = pd.DataFrame(data) |
|
|
|
def recommend_activities(interests, num_recommendations=3): |
|
if not interests: |
|
return "Please enter your interests." |
|
|
|
user_interests = interests.lower() |
|
tfidf = TfidfVectorizer() |
|
tfidf_matrix_events = tfidf.fit_transform(events_df['tags']) |
|
tfidf_matrix_user = tfidf.transform([user_interests]) |
|
similarities = cosine_similarity(tfidf_matrix_user, tfidf_matrix_events) |
|
top_indices = similarities.argsort()[0][-num_recommendations:][::-1] |
|
recommendations = events_df.iloc[top_indices][['title', 'description']].values.tolist() |
|
return recommendations |
|
|
|
|
|
def create_event(title, description, location, date_time, tags): |
|
print(f"Event created: {title}, {description}, {location}, {date_time}, {tags}") |
|
return "Event created successfully!" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# AI Community Builder") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
interests_input = gr.Textbox(label="Your Interests (comma-separated)", lines=2, placeholder="e.g., hiking, reading, cooking") |
|
num_recs_input = gr.Slider(label="Number of Recommendations", minimum=1, maximum=5, value=3, step=1) |
|
recommend_button = gr.Button("Get Recommendations") |
|
|
|
with gr.Column(): |
|
recommendations_output = gr.Dataframe(headers=["Title", "Description"], datatype=["str", "str"], interactive=True) |
|
|
|
|
|
recommend_button.click(fn=recommend_activities, inputs=[interests_input, num_recs_input], outputs=recommendations_output) |
|
|
|
with gr.Accordion("Create a New Event", open=False): |
|
with gr.Row(): |
|
title_input = gr.Textbox(label="Event Title", placeholder="Enter event title") |
|
description_input = gr.Textbox(label="Description", lines=3, placeholder="Enter a brief description") |
|
with gr.Row(): |
|
location_input = gr.Textbox(label="Location", placeholder="Enter location details") |
|
datetime_input = gr.Textbox(label="Date & Time (YYYY-MM-DD HH:MM)", placeholder="Enter date and time") |
|
tags_input = gr.Textbox(label="Tags (comma-separated)", placeholder="Enter relevant tags") |
|
create_event_button = gr.Button("Create Event") |
|
|
|
create_event_button.click(fn=create_event, inputs=[title_input, description_input, location_input, datetime_input, tags_input], outputs=gr.Textbox(label="Result")) |
|
|
|
demo.launch() |