ThomasSimonini HF staff commited on
Commit
27e0581
1 Parent(s): 3568b25

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -8,57 +8,30 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 271.51 +/- 16.73
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
- # ppo-LunarLander-v2
23
-
24
- This is a pre-trained model of a PPO agent playing LunarLander-v2 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.
25
 
26
- ### Usage (with Stable-baselines3)
27
- Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
 
28
 
29
- ```
30
- pip install stable-baselines3
31
- pip install huggingface_sb3
32
- ```
33
 
34
- Then, you can use the model like this:
35
 
36
  ```python
37
- import gym
38
-
39
  from huggingface_sb3 import load_from_hub
40
- from stable_baselines3 import PPO
41
- from stable_baselines3.common.evaluation import evaluate_policy
42
 
43
- # Retrieve the model from the hub
44
- ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
45
- ## filename = name of the model zip file from the repository
46
- checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-LunarLander-v2", filename="ppo-LunarLander-v2.zip")
47
- model = PPO.load(checkpoint)
48
-
49
- # Evaluate the agent
50
- eval_env = gym.make('LunarLander-v2')
51
- mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
52
- print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
53
-
54
- # Watch the agent play
55
- obs = eval_env.reset()
56
- for i in range(1000):
57
- action, _state = model.predict(obs)
58
- obs, reward, done, info = eval_env.step(action)
59
- eval_env.render()
60
- if done:
61
- obs = eval_env.reset()
62
- eval_env.close()
63
  ```
64
-
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -135.43 +/- 104.92
20
+ name: mean_reward
21
+ verified: false
22
  ---
 
 
 
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
 
 
30
 
 
31
 
32
  ```python
33
+ from stable_baselines3 import ...
 
34
  from huggingface_sb3 import load_from_hub
 
 
35
 
36
+ ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ```
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41d9183b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41d9183b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41d9183c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41d9183cb0>", "_build": "<function ActorCriticPolicy._build at 0x7f41d9183d40>", "forward": "<function ActorCriticPolicy.forward at 0x7f41d9183dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41d9183e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f41d9183ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41d9183f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41d9108050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41d91080e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f41d9148e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651584013.3860974, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZvm6DH/Gb0CUhpRSlIwBbJRLwIwBdJRHQJy/pnTRYzV1fZQoaAZoCWgPQwit+8dCdJxzQJSGlFKUaBVL+GgWR0Ccv8RCx/utdX2UKGgGaAloD0MId/UqMro3bkCUhpRSlGgVS8toFkdAnMBXNxEORXV9lChoBmgJaA9DCMAhVKnZKHBAlIaUUpRoFUvKaBZHQJzA4XHim2t1fZQoaAZoCWgPQwjr/rEQ3cRxQJSGlFKUaBVLvmgWR0CcwWjX4CZGdX2UKGgGaAloD0MIVmXfFcGNckCUhpRSlGgVS9ZoFkdAnMHB9PUKA3V9lChoBmgJaA9DCGVuvhHd0G9AlIaUUpRoFU0QAmgWR0Ccw7Gsmv4edX2UKGgGaAloD0MI6j9rfvxNYkCUhpRSlGgVTegDaBZHQJzEn+S8rZt1fZQoaAZoCWgPQwhQOLu1zLNyQJSGlFKUaBVLzGgWR0CcxVS3b212dX2UKGgGaAloD0MIcqWeBaFMb0CUhpRSlGgVS8hoFkdAnMWb2USqVHV9lChoBmgJaA9DCFX7dDzmtnBAlIaUUpRoFUvtaBZHQJzFm1mapgl1fZQoaAZoCWgPQwhZMsfyLrlwQJSGlFKUaBVLuWgWR0CcxvVsUIszdX2UKGgGaAloD0MIN+FembdISECUhpRSlGgVS9JoFkdAnMdMcENe+nV9lChoBmgJaA9DCMqLTMCvl3FAlIaUUpRoFUvLaBZHQJzIQV9F4LV1fZQoaAZoCWgPQwgKEAUzJppxQJSGlFKUaBVL5WgWR0CcyJpAUtZndX2UKGgGaAloD0MInzvB/muGc0CUhpRSlGgVS+BoFkdAnMmk/OdGzHV9lChoBmgJaA9DCHBdMSO88G5AlIaUUpRoFUvaaBZHQJzKUSRKYiR1fZQoaAZoCWgPQwgQlUbM7A9BQJSGlFKUaBVLtGgWR0Ccy7mlqJuVdX2UKGgGaAloD0MIeVc9YF5LcECUhpRSlGgVTQwBaBZHQJzMAzpHI6t1fZQoaAZoCWgPQwhj0t9LYS1wQJSGlFKUaBVNRwNoFkdAnM0HIIWxhXV9lChoBmgJaA9DCBMteTwts21AlIaUUpRoFUvdaBZHQJzOIuh9LHx1fZQoaAZoCWgPQwjePNUhNwdOQJSGlFKUaBVLtmgWR0CczqKoQ4CIdX2UKGgGaAloD0MIgT/8/LcScECUhpRSlGgVS+loFkdAnM7g2VE/jnV9lChoBmgJaA9DCHjVA+Yhm3FAlIaUUpRoFUvraBZHQJzO9m+TNdJ1fZQoaAZoCWgPQwgZVYZx9ylxQJSGlFKUaBVLzWgWR0CczzQrtmcwdX2UKGgGaAloD0MIc3/1uK9scECUhpRSlGgVS+VoFkdAnNFXPAwfyXV9lChoBmgJaA9DCLRVSWTfcnFAlIaUUpRoFUvwaBZHQJzSGcOLBKt1fZQoaAZoCWgPQwjB/YAHBrdyQJSGlFKUaBVL4GgWR0Cc0x/BFd9ldX2UKGgGaAloD0MIJbA5B88MY0CUhpRSlGgVTegDaBZHQJzTWznied11fZQoaAZoCWgPQwjusl93OtpyQJSGlFKUaBVLyGgWR0Cc04n9ehPCdX2UKGgGaAloD0MIsTBETl/KbkCUhpRSlGgVS8VoFkdAnNOornTy8XV9lChoBmgJaA9DCPrS258LhWRAlIaUUpRoFU3oA2gWR0Cc1JkpZwGXdX2UKGgGaAloD0MI521sdqQocECUhpRSlGgVS89oFkdAnNbIS13MZHV9lChoBmgJaA9DCKBU+3R8xnBAlIaUUpRoFUvKaBZHQJzW1zxPO6d1fZQoaAZoCWgPQwgjSRCugPhxQJSGlFKUaBVL7GgWR0Cc1xT+ee4DdX2UKGgGaAloD0MIP+YDAh19cECUhpRSlGgVS7toFkdAnNh3sC1Z1XV9lChoBmgJaA9DCDF8REzJuXJAlIaUUpRoFU0JAWgWR0Cc2L1QqI8AdX2UKGgGaAloD0MIAvT7/k1pYkCUhpRSlGgVTegDaBZHQJzZQ5o4+8p1fZQoaAZoCWgPQwgwmwDDMoZwQJSGlFKUaBVNFAFoFkdAnNlq0D2alXV9lChoBmgJaA9DCKuYSj8h/HBAlIaUUpRoFUvVaBZHQJzbXpSrHVB1fZQoaAZoCWgPQwju0Rvuo0lwQJSGlFKUaBVL2mgWR0Cc21q8DjiodX2UKGgGaAloD0MIlN43vnZec0CUhpRSlGgVTQgBaBZHQJze7rxAjY91fZQoaAZoCWgPQwjSVE/mH8JxQJSGlFKUaBVLtGgWR0Cc37gDRtxddX2UKGgGaAloD0MIhNiZQmfPcECUhpRSlGgVS+ZoFkdAnOAUk4WDYnV9lChoBmgJaA9DCIPDCyJS5W9AlIaUUpRoFUvnaBZHQJzgEK8cuJ11fZQoaAZoCWgPQwipbFhTmZhxQJSGlFKUaBVLzGgWR0Cc4Q0iQkondX2UKGgGaAloD0MIIAn7dhL6cECUhpRSlGgVS7xoFkdAnOEd1IRRM3V9lChoBmgJaA9DCOCgvfp47nBAlIaUUpRoFU0JAWgWR0Cc4d/yoXKsdX2UKGgGaAloD0MIQS5x5AHeb0CUhpRSlGgVS7xoFkdAnONp7HAAQ3V9lChoBmgJaA9DCISCUrTyYHFAlIaUUpRoFU0MAWgWR0Cc5G9eyAx0dX2UKGgGaAloD0MIc/ON6B7+cECUhpRSlGgVS+FoFkdAnOUJPEbYLHV9lChoBmgJaA9DCCC4yhMIU0VAlIaUUpRoFUuAaBZHQJznk41gpjN1fZQoaAZoCWgPQwjrAfOQaeFwQJSGlFKUaBVLy2gWR0Cc5/haTwDvdX2UKGgGaAloD0MIxebj2tD3cUCUhpRSlGgVS8VoFkdAnOjYWtU4rHV9lChoBmgJaA9DCGQke4Sa5XJAlIaUUpRoFUvPaBZHQJzo8meDnNh1fZQoaAZoCWgPQwhRMjm1M+NuQJSGlFKUaBVL12gWR0Cc6sYhMajvdX2UKGgGaAloD0MIlzrI68EMcUCUhpRSlGgVTQYBaBZHQJzr9xPwd811fZQoaAZoCWgPQwiXAPxTKk1iQJSGlFKUaBVN6ANoFkdAnOy4agmJFnV9lChoBmgJaA9DCBMsDmf+wG5AlIaUUpRoFUvMaBZHQJzxKqNp/PR1fZQoaAZoCWgPQwiDwqBMI3NvQJSGlFKUaBVL22gWR0Cc8lII4VASdX2UKGgGaAloD0MIFTduMT+LcECUhpRSlGgVS8loFkdAnPJnU2DQJHV9lChoBmgJaA9DCMAlAP8Unm9AlIaUUpRoFUvLaBZHQJzymQkona51fZQoaAZoCWgPQwgvaYzWUVBxQJSGlFKUaBVNgAFoFkdAnPLetbLU1HV9lChoBmgJaA9DCJRrCmT2y3BAlIaUUpRoFUu6aBZHQJzzkw0wait1fZQoaAZoCWgPQwh7ZkmAmpNlQJSGlFKUaBVN6ANoFkdAnPPkzj3mFXV9lChoBmgJaA9DCCekNQbdP3BAlIaUUpRoFU1dAWgWR0Cc9KZCfHxSdX2UKGgGaAloD0MIKh2s/3M8bUCUhpRSlGgVS8toFkdAnPXzzRQaaXV9lChoBmgJaA9DCBYzwtuDZV5AlIaUUpRoFU3oA2gWR0Cc90glWwNcdX2UKGgGaAloD0MI+3d95izOcECUhpRSlGgVTQYBaBZHQJz3xKxs2vV1fZQoaAZoCWgPQwhLOV/s/SZxQJSGlFKUaBVL4mgWR0Cc+tAuqWC3dX2UKGgGaAloD0MI1c3F3zbhckCUhpRSlGgVS8xoFkdAnPrsG9pRGnV9lChoBmgJaA9DCGvSbYncCnJAlIaUUpRoFUvWaBZHQJz7RgQYk3V1fZQoaAZoCWgPQwiyaDo7mZ1tQJSGlFKUaBVLvmgWR0Cc+7Ns3yZsdX2UKGgGaAloD0MIBr6iW69bb0CUhpRSlGgVS91oFkdAnPysUIsyz3V9lChoBmgJaA9DCGajc34KzGBAlIaUUpRoFU3oA2gWR0Cc/K8Hv+fidX2UKGgGaAloD0MI3nGKjiSXcUCUhpRSlGgVS/VoFkdAnPzHhjvuxHV9lChoBmgJaA9DCP+xEB0Cr0RAlIaUUpRoFUvJaBZHQJz85WsA/9p1fZQoaAZoCWgPQwgi4Xt/wzBxQJSGlFKUaBVL8mgWR0Cc/OJdSl3ydX2UKGgGaAloD0MIi4hi8gYjYECUhpRSlGgVTegDaBZHQJz93Jgb6xh1fZQoaAZoCWgPQwh0Yg/tY5djQJSGlFKUaBVN6ANoFkdAnP36gAZKnXV9lChoBmgJaA9DCFmHo6u0iXBAlIaUUpRoFUvLaBZHQJz/PiFTNt91fZQoaAZoCWgPQwh2/1iIDhtvQJSGlFKUaBVL5mgWR0Cc/7JcxCY1dX2UKGgGaAloD0MIqDej5iuocUCUhpRSlGgVTRgBaBZHQJ0AT4VRDTl1fZQoaAZoCWgPQwi1xMpopBxxQJSGlFKUaBVLtmgWR0CdAPpgkTpQdX2UKGgGaAloD0MIzLOSVnyscECUhpRSlGgVS8BoFkdAnQFkfDDTB3V9lChoBmgJaA9DCN8yp8uiinBAlIaUUpRoFUvPaBZHQJ0CK0IC2c91fZQoaAZoCWgPQwhWC+wxEY9uQJSGlFKUaBVLxGgWR0CdAv+wTufFdX2UKGgGaAloD0MIxofZyzY4ckCUhpRSlGgVS8VoFkdAnQMfo/zJ63V9lChoBmgJaA9DCN/8holGR3FAlIaUUpRoFUu7aBZHQJ0D9N0vGqB1fZQoaAZoCWgPQwhQOLu1jFVwQJSGlFKUaBVL3WgWR0CdBA3Lmp2mdX2UKGgGaAloD0MIUp55Oay1c0CUhpRSlGgVS+1oFkdAnQSV54W1t3V9lChoBmgJaA9DCJSHhVoTMXBAlIaUUpRoFUvOaBZHQJ0EvPGACnx1fZQoaAZoCWgPQwhoXDgQksJwQJSGlFKUaBVLxGgWR0CdBeR/mT1TdX2UKGgGaAloD0MIpI0j1iLQckCUhpRSlGgVS89oFkdAnQeuoYNy53V9lChoBmgJaA9DCEM50a7CwnJAlIaUUpRoFUvFaBZHQJ0IEq9XcQB1fZQoaAZoCWgPQwhbtABtaxFwQJSGlFKUaBVL12gWR0CdCjX2ugYhdX2UKGgGaAloD0MI9FKxMa+cYkCUhpRSlGgVTegDaBZHQJ0MPKmsNlR1fZQoaAZoCWgPQwgaiGUzh4JwQJSGlFKUaBVL3GgWR0CdDOSpR4yHdX2UKGgGaAloD0MIiudsAeGtcECUhpRSlGgVS+1oFkdAnQ2OglF+eHV9lChoBmgJaA9DCLdfPlkxvGFAlIaUUpRoFU3oA2gWR0CdDe274BV/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc037fae0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc037fae160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc037fae1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc037fae280>", "_build": "<function ActorCriticPolicy._build at 0x7fc037fae310>", "forward": "<function ActorCriticPolicy.forward at 0x7fc037fae3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc037fae430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc037fae4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc037fae550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc037fae5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc037fae670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc037fae700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc037fadfc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678910094329777351, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAp2hD7f6Dw/OcceP8brgb+ed5++sOHuvQAAAAAAAAAAprOcPiTFiz8V4oc/Af8Tvzw0A7+qKOq+AAAAAAAAAAAzht4+OUG2P+XGbz+jkta+pCjZvgfEIL4AAAAAAAAAAADK1Dx9aLI/q34KP0FeMb4Z4ye96INYvgAAAAAAAAAArcJZP390Rj8a18k/owJ6vwI1jL97Qni+AAAAAAAAAADzdfe9uL6iu31Yhz2LBbY8Yw74PCLolL0AAIA/AACAP+bu1T2TZes+fn3TPr5gsb87XGa/8EiNvgAAAAAAAAAAQED/PVypyz6JiSo+TCWov8xmcT7em4Y+AAAAAAAAAAAtcRm+vBbNP/EpFb/6BvU9vgqrPhQDkD4AAAAAAAAAAJqVqDyRUbg/qd62PvNCKT4vohu9vM5IvgAAAAAAAAAAcFyqPvSB1z73+MU9odaUvzdQED+FsE09AAAAAAAAAADazQc+mnpWP+PZ2z1ePWS/YCHMPiMDsT4AAAAAAAAAAE1hGD6HTGA/z1+YPzdIor/U87i/z6aIvgAAAAAAAAAAjWmUPd7vvD8fRqQ+hsMgviYEqb7eI5C+AAAAAAAAAACgsm0+lKaBP4USGD/E8jm/jo7XvtKjw74AAAAAAAAAALMkzb0tun4/DaWcvpaPUL97O3w+qoEQPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPpKSHobrZcCUhpRSlIwBbJRLWIwBdJRHQDPHWH1vl2h1fZQoaAZoCWgPQwhuwOeHEWJewJSGlFKUaBVLbGgWR0Az3irDIikgdX2UKGgGaAloD0MILxaGyOlYYcCUhpRSlGgVS2RoFkdAM+eO801qFnV9lChoBmgJaA9DCBgK2A5Gl1nAlIaUUpRoFUt9aBZHQDP5wdbPhQ51fZQoaAZoCWgPQwjTpBR0eytewJSGlFKUaBVLPGgWR0Az+opQUHpsdX2UKGgGaAloD0MIUDV6NUDKWMCUhpRSlGgVS0ZoFkdAM/2iQDFId3V9lChoBmgJaA9DCOHvF7Olp27AlIaUUpRoFUt5aBZHQDP+LOzIFNd1fZQoaAZoCWgPQwjEd2LWi9VawJSGlFKUaBVLQ2gWR0A0CVawD/2kdX2UKGgGaAloD0MIfSO6Z11yVcCUhpRSlGgVS05oFkdANBk+kgwGnnV9lChoBmgJaA9DCOGX+nlTM0vAlIaUUpRoFUuBaBZHQDQtl8PWhAZ1fZQoaAZoCWgPQwjSqpZ0lJ5XwJSGlFKUaBVLSWgWR0A0P0ZFXq7idX2UKGgGaAloD0MIBU1LrIxuXcCUhpRSlGgVS2JoFkdANFpAQg9vCXV9lChoBmgJaA9DCEyqtpvgbXDAlIaUUpRoFUtxaBZHQDRkornTy8V1fZQoaAZoCWgPQwhqbRrb6+hswJSGlFKUaBVLiWgWR0A0ZKPXCj1xdX2UKGgGaAloD0MI4Cu69RqPbcCUhpRSlGgVS15oFkdANGQX668QI3V9lChoBmgJaA9DCAskKH6M33XAlIaUUpRoFUtnaBZHQDR7TTfBN211fZQoaAZoCWgPQwjOixNfbWhhwJSGlFKUaBVLUmgWR0A0f9JBgNPQdX2UKGgGaAloD0MIjxoTYi4vV8CUhpRSlGgVS2JoFkdANIJpvgm7a3V9lChoBmgJaA9DCO1kcJS84VfAlIaUUpRoFUtWaBZHQDSDSro4dZJ1fZQoaAZoCWgPQwjF46JaxFx4wJSGlFKUaBVLbGgWR0A0jPqcEvCedX2UKGgGaAloD0MImkF8YEenacCUhpRSlGgVS15oFkdANI7tAs052nV9lChoBmgJaA9DCK8jDtlA6VDAlIaUUpRoFUtYaBZHQDS4wi7kGRp1fZQoaAZoCWgPQwgLC+4HPNRowJSGlFKUaBVLe2gWR0A0vp1RtP56dX2UKGgGaAloD0MIKpDZWbS5fMCUhpRSlGgVS21oFkdANMWD+R5kb3V9lChoBmgJaA9DCL9gN2xb/m7AlIaUUpRoFUtWaBZHQDTHTTfBN211fZQoaAZoCWgPQwg0nDI339JawJSGlFKUaBVLQ2gWR0A0zCGvfTCtdX2UKGgGaAloD0MIHM9nQD0cesCUhpRSlGgVS4FoFkdANNRrJr+HanV9lChoBmgJaA9DCH8XtmYr8lnAlIaUUpRoFUtMaBZHQDTa5Zr56+p1fZQoaAZoCWgPQwj+RdCYSa1ZwJSGlFKUaBVLO2gWR0A03ngHeJpGdX2UKGgGaAloD0MI0gDeAgknVcCUhpRSlGgVS0VoFkdANO6FIuoP1HV9lChoBmgJaA9DCHKHTWTmrnDAlIaUUpRoFUtLaBZHQDTwvmHP/rB1fZQoaAZoCWgPQwh6NUBpKNdxwJSGlFKUaBVLYGgWR0A0+0WuX/o8dX2UKGgGaAloD0MIwf2ABwZ4R8CUhpRSlGgVS29oFkdANQnoHLRrrXV9lChoBmgJaA9DCG77HvVX23PAlIaUUpRoFUtfaBZHQDUWTq0MPSV1fZQoaAZoCWgPQwiiQ+BIIMJiwJSGlFKUaBVLPGgWR0A1K3g1m8NAdX2UKGgGaAloD0MIKH0h5DwGY8CUhpRSlGgVSzloFkdANS9jbzshPnV9lChoBmgJaA9DCFuWr8vwGFbAlIaUUpRoFUtJaBZHQDUzUBnzxw11fZQoaAZoCWgPQwhX0LTEyn9SwJSGlFKUaBVLa2gWR0A1Nd7v5P/JdX2UKGgGaAloD0MIAwZJn1bpb8CUhpRSlGgVS1doFkdANUT6rNnoPnV9lChoBmgJaA9DCAH6ff/mNmTAlIaUUpRoFUt2aBZHQDVKgzxgAp91fZQoaAZoCWgPQwh9W7BUF1NrwJSGlFKUaBVLRWgWR0A1SpkPMB6sdX2UKGgGaAloD0MIA83n3G3OY8CUhpRSlGgVS1xoFkdANVjz3AVO9HV9lChoBmgJaA9DCOnUlc/yH1rAlIaUUpRoFUtiaBZHQDVjh73PAwh1fZQoaAZoCWgPQwgJi4o4ncVawJSGlFKUaBVLPWgWR0A1aiItUXHjdX2UKGgGaAloD0MINpNvtjl2bcCUhpRSlGgVS09oFkdANWz+rELpinV9lChoBmgJaA9DCIUF9wMes17AlIaUUpRoFUtbaBZHQDWMJu2qkuZ1fZQoaAZoCWgPQwih9fBlomFqwJSGlFKUaBVLd2gWR0A1mqgh8pkPdX2UKGgGaAloD0MIP6phvyfZc8CUhpRSlGgVS3NoFkdANaGK/Efkm3V9lChoBmgJaA9DCL+ZmC4Ef3DAlIaUUpRoFUtOaBZHQDWjsyBTXJ51fZQoaAZoCWgPQwjQYFPn0bh3wJSGlFKUaBVLX2gWR0A1pD9wWFewdX2UKGgGaAloD0MIKAtfX+sDYsCUhpRSlGgVS1doFkdANa7sByS3b3V9lChoBmgJaA9DCAq6vaRxVnPAlIaUUpRoFUtiaBZHQDW0LUkOZst1fZQoaAZoCWgPQwg2yY/4FXNQwJSGlFKUaBVLS2gWR0A1ujps41gqdX2UKGgGaAloD0MIXDgQkoVOacCUhpRSlGgVS0BoFkdANbwazeGfw3V9lChoBmgJaA9DCCl1yTjGJHDAlIaUUpRoFUtsaBZHQDXGFwkxASp1fZQoaAZoCWgPQwhyFCAKZiZYwJSGlFKUaBVLaWgWR0A1z5EMLF4tdX2UKGgGaAloD0MIvCNjtfkOWcCUhpRSlGgVS1ZoFkdANdDrAxi5NHV9lChoBmgJaA9DCIS9iSE5cFPAlIaUUpRoFUtEaBZHQDXWKEWZZ0V1fZQoaAZoCWgPQwg0EwznGqNZwJSGlFKUaBVLcmgWR0A11twaR6njdX2UKGgGaAloD0MICcA/pUpVW8CUhpRSlGgVS31oFkdANeUhePaL43V9lChoBmgJaA9DCCMT8GskZlzAlIaUUpRoFUtOaBZHQDX1Lsa86FN1fZQoaAZoCWgPQwhfXRWoxYdTwJSGlFKUaBVLWmgWR0A19+VC5VfedX2UKGgGaAloD0MIPglszsG+VcCUhpRSlGgVS1RoFkdANfnTNMXaanV9lChoBmgJaA9DCJm7lpCPc2zAlIaUUpRoFU3NAmgWR0A1+5aePJaJdX2UKGgGaAloD0MIguUIGcgbW8CUhpRSlGgVS0FoFkdANftdqtYCAHV9lChoBmgJaA9DCAbZsnxdpFjAlIaUUpRoFUtAaBZHQDYAMmWt2cJ1fZQoaAZoCWgPQwjejQWFAVl2wJSGlFKUaBVLh2gWR0A2AWl/H5rQdX2UKGgGaAloD0MI3nNgOQIZecCUhpRSlGgVS2NoFkdANgjujRD1G3V9lChoBmgJaA9DCNi61Aj9S2TAlIaUUpRoFUtZaBZHQDYK3DvVmSR1fZQoaAZoCWgPQwjVXkTbMf92wJSGlFKUaBVLXmgWR0A2GO3DvVmSdX2UKGgGaAloD0MI1EfgDz8RaMCUhpRSlGgVS0ZoFkdANhss+V1OkHV9lChoBmgJaA9DCEm70cd8aFnAlIaUUpRoFUtTaBZHQDYhYFJQLux1fZQoaAZoCWgPQwj/l2vRgj5hwJSGlFKUaBVLVWgWR0A2I+T/yXlbdX2UKGgGaAloD0MINdB8zp13dcCUhpRSlGgVS29oFkdANjDSPU8V6HV9lChoBmgJaA9DCFwC8E8pcWrAlIaUUpRoFUtEaBZHQDY0rGza9K51fZQoaAZoCWgPQwiJX7GGC21jwJSGlFKUaBVLTGgWR0A2OpItlI3BdX2UKGgGaAloD0MIMVwdAHH+UMCUhpRSlGgVS09oFkdANj3aFmFrVXV9lChoBmgJaA9DCI0qw7gbbmHAlIaUUpRoFUtKaBZHQDY/3+MqBmR1fZQoaAZoCWgPQwg+7fDXZCtewJSGlFKUaBVLeWgWR0A2RUcn3L3cdX2UKGgGaAloD0MIoKhsWNNiYMCUhpRSlGgVS1ZoFkdANki/XXiBG3V9lChoBmgJaA9DCA5Pr5TlA2XAlIaUUpRoFUs8aBZHQDZNB/qgRK91fZQoaAZoCWgPQwgqkUQvoxFgwJSGlFKUaBVLUmgWR0A2UMEA5q/NdX2UKGgGaAloD0MI+8xZn3IDZcCUhpRSlGgVS3doFkdANlBoqTbFj3V9lChoBmgJaA9DCAtBDkrYrHTAlIaUUpRoFUtnaBZHQDZPfCQ9zOp1fZQoaAZoCWgPQwixUGua92JxwJSGlFKUaBVLaGgWR0A2U8kD6nBMdX2UKGgGaAloD0MIqvOo+L/bW8CUhpRSlGgVS09oFkdANlo2sJY1YXV9lChoBmgJaA9DCM/abRcaV37AlIaUUpRoFUtqaBZHQDZiSA6Mir11fZQoaAZoCWgPQwgS+S6lLnJVwJSGlFKUaBVLVGgWR0A2aNi6QNkOdX2UKGgGaAloD0MItXBZhU3dYcCUhpRSlGgVS1loFkdANmqJZW7vonV9lChoBmgJaA9DCLEWnwIgAXHAlIaUUpRoFUtRaBZHQDaBh2GIsRR1fZQoaAZoCWgPQwj8i6AxE1lgwJSGlFKUaBVLTGgWR0A2hONo8IRidX2UKGgGaAloD0MIDkktlEwDWMCUhpRSlGgVS0BoFkdANoSuU2UB4nV9lChoBmgJaA9DCK2m64muu13AlIaUUpRoFUtlaBZHQDaJaKUFB6d1fZQoaAZoCWgPQwgLDcSymZtXwJSGlFKUaBVLSWgWR0A2jdi2DxsmdX2UKGgGaAloD0MIFHe8yW/8W8CUhpRSlGgVS2toFkdANpR2St/4I3V9lChoBmgJaA9DCK3B+6rcgmjAlIaUUpRoFUtaaBZHQDaVDD0lJH11fZQoaAZoCWgPQwjMRBFSN4NgwJSGlFKUaBVLR2gWR0A2lyMDOkckdX2UKGgGaAloD0MIL9tOW6Pvd8CUhpRSlGgVS1loFkdANpibDuSfUXV9lChoBmgJaA9DCFBUNqwpg3PAlIaUUpRoFUtraBZHQDawF1SwW311fZQoaAZoCWgPQwh9QKAzaedLwJSGlFKUaBVLcWgWR0A2sebd8Aq/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1f05bdd3430c9aa6c648c16418a30429f931bfa3f45f95a108e2d616ccdb772b
3
- size 143082
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b51e69bc2db5f6e089be5333e65e140ffb7096f06fd6da9edfe7655a840a194
3
+ size 147276
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.0
 
1
+ 1.7.0
ppo-LunarLander-v2/data CHANGED
@@ -3,20 +3,21 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41d9183b00>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41d9183b90>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41d9183c20>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41d9183cb0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f41d9183d40>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f41d9183dd0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41d9183e60>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f41d9183ef0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41d9183f80>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41d9108050>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41d91080e0>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f41d9148e10>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,19 +43,22 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651584013.3860974,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
 
 
 
56
  },
57
- "_last_obs": null,
58
  "_last_episode_starts": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
  ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
@@ -63,27 +67,27 @@
63
  "_episode_num": 0,
64
  "use_sde": false,
65
  "sde_sample_freq": -1,
66
- "_current_progress_remaining": -0.015808000000000044,
67
  "ep_info_buffer": {
68
  ":type:": "<class 'collections.deque'>",
69
- ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZvm6DH/Gb0CUhpRSlIwBbJRLwIwBdJRHQJy/pnTRYzV1fZQoaAZoCWgPQwit+8dCdJxzQJSGlFKUaBVL+GgWR0Ccv8RCx/utdX2UKGgGaAloD0MId/UqMro3bkCUhpRSlGgVS8toFkdAnMBXNxEORXV9lChoBmgJaA9DCMAhVKnZKHBAlIaUUpRoFUvKaBZHQJzA4XHim2t1fZQoaAZoCWgPQwjr/rEQ3cRxQJSGlFKUaBVLvmgWR0CcwWjX4CZGdX2UKGgGaAloD0MIVmXfFcGNckCUhpRSlGgVS9ZoFkdAnMHB9PUKA3V9lChoBmgJaA9DCGVuvhHd0G9AlIaUUpRoFU0QAmgWR0Ccw7Gsmv4edX2UKGgGaAloD0MI6j9rfvxNYkCUhpRSlGgVTegDaBZHQJzEn+S8rZt1fZQoaAZoCWgPQwhQOLu1zLNyQJSGlFKUaBVLzGgWR0CcxVS3b212dX2UKGgGaAloD0MIcqWeBaFMb0CUhpRSlGgVS8hoFkdAnMWb2USqVHV9lChoBmgJaA9DCFX7dDzmtnBAlIaUUpRoFUvtaBZHQJzFm1mapgl1fZQoaAZoCWgPQwhZMsfyLrlwQJSGlFKUaBVLuWgWR0CcxvVsUIszdX2UKGgGaAloD0MIN+FembdISECUhpRSlGgVS9JoFkdAnMdMcENe+nV9lChoBmgJaA9DCMqLTMCvl3FAlIaUUpRoFUvLaBZHQJzIQV9F4LV1fZQoaAZoCWgPQwgKEAUzJppxQJSGlFKUaBVL5WgWR0CcyJpAUtZndX2UKGgGaAloD0MInzvB/muGc0CUhpRSlGgVS+BoFkdAnMmk/OdGzHV9lChoBmgJaA9DCHBdMSO88G5AlIaUUpRoFUvaaBZHQJzKUSRKYiR1fZQoaAZoCWgPQwgQlUbM7A9BQJSGlFKUaBVLtGgWR0Ccy7mlqJuVdX2UKGgGaAloD0MIeVc9YF5LcECUhpRSlGgVTQwBaBZHQJzMAzpHI6t1fZQoaAZoCWgPQwhj0t9LYS1wQJSGlFKUaBVNRwNoFkdAnM0HIIWxhXV9lChoBmgJaA9DCBMteTwts21AlIaUUpRoFUvdaBZHQJzOIuh9LHx1fZQoaAZoCWgPQwjePNUhNwdOQJSGlFKUaBVLtmgWR0CczqKoQ4CIdX2UKGgGaAloD0MIgT/8/LcScECUhpRSlGgVS+loFkdAnM7g2VE/jnV9lChoBmgJaA9DCHjVA+Yhm3FAlIaUUpRoFUvraBZHQJzO9m+TNdJ1fZQoaAZoCWgPQwgZVYZx9ylxQJSGlFKUaBVLzWgWR0CczzQrtmcwdX2UKGgGaAloD0MIc3/1uK9scECUhpRSlGgVS+VoFkdAnNFXPAwfyXV9lChoBmgJaA9DCLRVSWTfcnFAlIaUUpRoFUvwaBZHQJzSGcOLBKt1fZQoaAZoCWgPQwjB/YAHBrdyQJSGlFKUaBVL4GgWR0Cc0x/BFd9ldX2UKGgGaAloD0MIJbA5B88MY0CUhpRSlGgVTegDaBZHQJzTWznied11fZQoaAZoCWgPQwjusl93OtpyQJSGlFKUaBVLyGgWR0Cc04n9ehPCdX2UKGgGaAloD0MIsTBETl/KbkCUhpRSlGgVS8VoFkdAnNOornTy8XV9lChoBmgJaA9DCPrS258LhWRAlIaUUpRoFU3oA2gWR0Cc1JkpZwGXdX2UKGgGaAloD0MI521sdqQocECUhpRSlGgVS89oFkdAnNbIS13MZHV9lChoBmgJaA9DCKBU+3R8xnBAlIaUUpRoFUvKaBZHQJzW1zxPO6d1fZQoaAZoCWgPQwgjSRCugPhxQJSGlFKUaBVL7GgWR0Cc1xT+ee4DdX2UKGgGaAloD0MIP+YDAh19cECUhpRSlGgVS7toFkdAnNh3sC1Z1XV9lChoBmgJaA9DCDF8REzJuXJAlIaUUpRoFU0JAWgWR0Cc2L1QqI8AdX2UKGgGaAloD0MIAvT7/k1pYkCUhpRSlGgVTegDaBZHQJzZQ5o4+8p1fZQoaAZoCWgPQwgwmwDDMoZwQJSGlFKUaBVNFAFoFkdAnNlq0D2alXV9lChoBmgJaA9DCKuYSj8h/HBAlIaUUpRoFUvVaBZHQJzbXpSrHVB1fZQoaAZoCWgPQwju0Rvuo0lwQJSGlFKUaBVL2mgWR0Cc21q8DjiodX2UKGgGaAloD0MIlN43vnZec0CUhpRSlGgVTQgBaBZHQJze7rxAjY91fZQoaAZoCWgPQwjSVE/mH8JxQJSGlFKUaBVLtGgWR0Cc37gDRtxddX2UKGgGaAloD0MIhNiZQmfPcECUhpRSlGgVS+ZoFkdAnOAUk4WDYnV9lChoBmgJaA9DCIPDCyJS5W9AlIaUUpRoFUvnaBZHQJzgEK8cuJ11fZQoaAZoCWgPQwipbFhTmZhxQJSGlFKUaBVLzGgWR0Cc4Q0iQkondX2UKGgGaAloD0MIIAn7dhL6cECUhpRSlGgVS7xoFkdAnOEd1IRRM3V9lChoBmgJaA9DCOCgvfp47nBAlIaUUpRoFU0JAWgWR0Cc4d/yoXKsdX2UKGgGaAloD0MIQS5x5AHeb0CUhpRSlGgVS7xoFkdAnONp7HAAQ3V9lChoBmgJaA9DCISCUrTyYHFAlIaUUpRoFU0MAWgWR0Cc5G9eyAx0dX2UKGgGaAloD0MIc/ON6B7+cECUhpRSlGgVS+FoFkdAnOUJPEbYLHV9lChoBmgJaA9DCCC4yhMIU0VAlIaUUpRoFUuAaBZHQJznk41gpjN1fZQoaAZoCWgPQwjrAfOQaeFwQJSGlFKUaBVLy2gWR0Cc5/haTwDvdX2UKGgGaAloD0MIxebj2tD3cUCUhpRSlGgVS8VoFkdAnOjYWtU4rHV9lChoBmgJaA9DCGQke4Sa5XJAlIaUUpRoFUvPaBZHQJzo8meDnNh1fZQoaAZoCWgPQwhRMjm1M+NuQJSGlFKUaBVL12gWR0Cc6sYhMajvdX2UKGgGaAloD0MIlzrI68EMcUCUhpRSlGgVTQYBaBZHQJzr9xPwd811fZQoaAZoCWgPQwiXAPxTKk1iQJSGlFKUaBVN6ANoFkdAnOy4agmJFnV9lChoBmgJaA9DCBMsDmf+wG5AlIaUUpRoFUvMaBZHQJzxKqNp/PR1fZQoaAZoCWgPQwiDwqBMI3NvQJSGlFKUaBVL22gWR0Cc8lII4VASdX2UKGgGaAloD0MIFTduMT+LcECUhpRSlGgVS8loFkdAnPJnU2DQJHV9lChoBmgJaA9DCMAlAP8Unm9AlIaUUpRoFUvLaBZHQJzymQkona51fZQoaAZoCWgPQwgvaYzWUVBxQJSGlFKUaBVNgAFoFkdAnPLetbLU1HV9lChoBmgJaA9DCJRrCmT2y3BAlIaUUpRoFUu6aBZHQJzzkw0wait1fZQoaAZoCWgPQwh7ZkmAmpNlQJSGlFKUaBVN6ANoFkdAnPPkzj3mFXV9lChoBmgJaA9DCCekNQbdP3BAlIaUUpRoFU1dAWgWR0Cc9KZCfHxSdX2UKGgGaAloD0MIKh2s/3M8bUCUhpRSlGgVS8toFkdAnPXzzRQaaXV9lChoBmgJaA9DCBYzwtuDZV5AlIaUUpRoFU3oA2gWR0Cc90glWwNcdX2UKGgGaAloD0MI+3d95izOcECUhpRSlGgVTQYBaBZHQJz3xKxs2vV1fZQoaAZoCWgPQwhLOV/s/SZxQJSGlFKUaBVL4mgWR0Cc+tAuqWC3dX2UKGgGaAloD0MI1c3F3zbhckCUhpRSlGgVS8xoFkdAnPrsG9pRGnV9lChoBmgJaA9DCGvSbYncCnJAlIaUUpRoFUvWaBZHQJz7RgQYk3V1fZQoaAZoCWgPQwiyaDo7mZ1tQJSGlFKUaBVLvmgWR0Cc+7Ns3yZsdX2UKGgGaAloD0MIBr6iW69bb0CUhpRSlGgVS91oFkdAnPysUIsyz3V9lChoBmgJaA9DCGajc34KzGBAlIaUUpRoFU3oA2gWR0Cc/K8Hv+fidX2UKGgGaAloD0MI3nGKjiSXcUCUhpRSlGgVS/VoFkdAnPzHhjvuxHV9lChoBmgJaA9DCP+xEB0Cr0RAlIaUUpRoFUvJaBZHQJz85WsA/9p1fZQoaAZoCWgPQwgi4Xt/wzBxQJSGlFKUaBVL8mgWR0Cc/OJdSl3ydX2UKGgGaAloD0MIi4hi8gYjYECUhpRSlGgVTegDaBZHQJz93Jgb6xh1fZQoaAZoCWgPQwh0Yg/tY5djQJSGlFKUaBVN6ANoFkdAnP36gAZKnXV9lChoBmgJaA9DCFmHo6u0iXBAlIaUUpRoFUvLaBZHQJz/PiFTNt91fZQoaAZoCWgPQwh2/1iIDhtvQJSGlFKUaBVL5mgWR0Cc/7JcxCY1dX2UKGgGaAloD0MIqDej5iuocUCUhpRSlGgVTRgBaBZHQJ0AT4VRDTl1fZQoaAZoCWgPQwi1xMpopBxxQJSGlFKUaBVLtmgWR0CdAPpgkTpQdX2UKGgGaAloD0MIzLOSVnyscECUhpRSlGgVS8BoFkdAnQFkfDDTB3V9lChoBmgJaA9DCN8yp8uiinBAlIaUUpRoFUvPaBZHQJ0CK0IC2c91fZQoaAZoCWgPQwhWC+wxEY9uQJSGlFKUaBVLxGgWR0CdAv+wTufFdX2UKGgGaAloD0MIxofZyzY4ckCUhpRSlGgVS8VoFkdAnQMfo/zJ63V9lChoBmgJaA9DCN/8holGR3FAlIaUUpRoFUu7aBZHQJ0D9N0vGqB1fZQoaAZoCWgPQwhQOLu1jFVwQJSGlFKUaBVL3WgWR0CdBA3Lmp2mdX2UKGgGaAloD0MIUp55Oay1c0CUhpRSlGgVS+1oFkdAnQSV54W1t3V9lChoBmgJaA9DCJSHhVoTMXBAlIaUUpRoFUvOaBZHQJ0EvPGACnx1fZQoaAZoCWgPQwhoXDgQksJwQJSGlFKUaBVLxGgWR0CdBeR/mT1TdX2UKGgGaAloD0MIpI0j1iLQckCUhpRSlGgVS89oFkdAnQeuoYNy53V9lChoBmgJaA9DCEM50a7CwnJAlIaUUpRoFUvFaBZHQJ0IEq9XcQB1fZQoaAZoCWgPQwhbtABtaxFwQJSGlFKUaBVL12gWR0CdCjX2ugYhdX2UKGgGaAloD0MI9FKxMa+cYkCUhpRSlGgVTegDaBZHQJ0MPKmsNlR1fZQoaAZoCWgPQwgaiGUzh4JwQJSGlFKUaBVL3GgWR0CdDOSpR4yHdX2UKGgGaAloD0MIiudsAeGtcECUhpRSlGgVS+1oFkdAnQ2OglF+eHV9lChoBmgJaA9DCLdfPlkxvGFAlIaUUpRoFU3oA2gWR0CdDe274BV/dWUu"
70
  },
71
  "ep_success_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
  },
75
- "_n_updates": 310,
76
- "n_steps": 2048,
77
- "gamma": 0.99,
78
- "gae_lambda": 0.95,
79
- "ent_coef": 0.0,
80
  "vf_coef": 0.5,
81
  "max_grad_norm": 0.5,
82
  "batch_size": 64,
83
- "n_epochs": 10,
84
  "clip_range": {
85
  ":type:": "<class 'function'>",
86
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
87
  },
88
  "clip_range_vf": null,
89
  "normalize_advantage": true,
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc037fae0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc037fae160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc037fae1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc037fae280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc037fae310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc037fae3a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc037fae430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc037fae4c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc037fae550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc037fae5e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc037fae670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc037fae700>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc037fadfc0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 16384,
47
+ "_total_timesteps": 1000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1678910094329777351,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAp2hD7f6Dw/OcceP8brgb+ed5++sOHuvQAAAAAAAAAAprOcPiTFiz8V4oc/Af8Tvzw0A7+qKOq+AAAAAAAAAAAzht4+OUG2P+XGbz+jkta+pCjZvgfEIL4AAAAAAAAAAADK1Dx9aLI/q34KP0FeMb4Z4ye96INYvgAAAAAAAAAArcJZP390Rj8a18k/owJ6vwI1jL97Qni+AAAAAAAAAADzdfe9uL6iu31Yhz2LBbY8Yw74PCLolL0AAIA/AACAP+bu1T2TZes+fn3TPr5gsb87XGa/8EiNvgAAAAAAAAAAQED/PVypyz6JiSo+TCWov8xmcT7em4Y+AAAAAAAAAAAtcRm+vBbNP/EpFb/6BvU9vgqrPhQDkD4AAAAAAAAAAJqVqDyRUbg/qd62PvNCKT4vohu9vM5IvgAAAAAAAAAAcFyqPvSB1z73+MU9odaUvzdQED+FsE09AAAAAAAAAADazQc+mnpWP+PZ2z1ePWS/YCHMPiMDsT4AAAAAAAAAAE1hGD6HTGA/z1+YPzdIor/U87i/z6aIvgAAAAAAAAAAjWmUPd7vvD8fRqQ+hsMgviYEqb7eI5C+AAAAAAAAAACgsm0+lKaBP4USGD/E8jm/jo7XvtKjw74AAAAAAAAAALMkzb0tun4/DaWcvpaPUL97O3w+qoEQPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
 
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
  ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
 
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -15.384,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPpKSHobrZcCUhpRSlIwBbJRLWIwBdJRHQDPHWH1vl2h1fZQoaAZoCWgPQwhuwOeHEWJewJSGlFKUaBVLbGgWR0Az3irDIikgdX2UKGgGaAloD0MILxaGyOlYYcCUhpRSlGgVS2RoFkdAM+eO801qFnV9lChoBmgJaA9DCBgK2A5Gl1nAlIaUUpRoFUt9aBZHQDP5wdbPhQ51fZQoaAZoCWgPQwjTpBR0eytewJSGlFKUaBVLPGgWR0Az+opQUHpsdX2UKGgGaAloD0MIUDV6NUDKWMCUhpRSlGgVS0ZoFkdAM/2iQDFId3V9lChoBmgJaA9DCOHvF7Olp27AlIaUUpRoFUt5aBZHQDP+LOzIFNd1fZQoaAZoCWgPQwjEd2LWi9VawJSGlFKUaBVLQ2gWR0A0CVawD/2kdX2UKGgGaAloD0MIfSO6Z11yVcCUhpRSlGgVS05oFkdANBk+kgwGnnV9lChoBmgJaA9DCOGX+nlTM0vAlIaUUpRoFUuBaBZHQDQtl8PWhAZ1fZQoaAZoCWgPQwjSqpZ0lJ5XwJSGlFKUaBVLSWgWR0A0P0ZFXq7idX2UKGgGaAloD0MIBU1LrIxuXcCUhpRSlGgVS2JoFkdANFpAQg9vCXV9lChoBmgJaA9DCEyqtpvgbXDAlIaUUpRoFUtxaBZHQDRkornTy8V1fZQoaAZoCWgPQwhqbRrb6+hswJSGlFKUaBVLiWgWR0A0ZKPXCj1xdX2UKGgGaAloD0MI4Cu69RqPbcCUhpRSlGgVS15oFkdANGQX668QI3V9lChoBmgJaA9DCAskKH6M33XAlIaUUpRoFUtnaBZHQDR7TTfBN211fZQoaAZoCWgPQwjOixNfbWhhwJSGlFKUaBVLUmgWR0A0f9JBgNPQdX2UKGgGaAloD0MIjxoTYi4vV8CUhpRSlGgVS2JoFkdANIJpvgm7a3V9lChoBmgJaA9DCO1kcJS84VfAlIaUUpRoFUtWaBZHQDSDSro4dZJ1fZQoaAZoCWgPQwjF46JaxFx4wJSGlFKUaBVLbGgWR0A0jPqcEvCedX2UKGgGaAloD0MImkF8YEenacCUhpRSlGgVS15oFkdANI7tAs052nV9lChoBmgJaA9DCK8jDtlA6VDAlIaUUpRoFUtYaBZHQDS4wi7kGRp1fZQoaAZoCWgPQwgLC+4HPNRowJSGlFKUaBVLe2gWR0A0vp1RtP56dX2UKGgGaAloD0MIKpDZWbS5fMCUhpRSlGgVS21oFkdANMWD+R5kb3V9lChoBmgJaA9DCL9gN2xb/m7AlIaUUpRoFUtWaBZHQDTHTTfBN211fZQoaAZoCWgPQwg0nDI339JawJSGlFKUaBVLQ2gWR0A0zCGvfTCtdX2UKGgGaAloD0MIHM9nQD0cesCUhpRSlGgVS4FoFkdANNRrJr+HanV9lChoBmgJaA9DCH8XtmYr8lnAlIaUUpRoFUtMaBZHQDTa5Zr56+p1fZQoaAZoCWgPQwj+RdCYSa1ZwJSGlFKUaBVLO2gWR0A03ngHeJpGdX2UKGgGaAloD0MI0gDeAgknVcCUhpRSlGgVS0VoFkdANO6FIuoP1HV9lChoBmgJaA9DCHKHTWTmrnDAlIaUUpRoFUtLaBZHQDTwvmHP/rB1fZQoaAZoCWgPQwh6NUBpKNdxwJSGlFKUaBVLYGgWR0A0+0WuX/o8dX2UKGgGaAloD0MIwf2ABwZ4R8CUhpRSlGgVS29oFkdANQnoHLRrrXV9lChoBmgJaA9DCG77HvVX23PAlIaUUpRoFUtfaBZHQDUWTq0MPSV1fZQoaAZoCWgPQwiiQ+BIIMJiwJSGlFKUaBVLPGgWR0A1K3g1m8NAdX2UKGgGaAloD0MIKH0h5DwGY8CUhpRSlGgVSzloFkdANS9jbzshPnV9lChoBmgJaA9DCFuWr8vwGFbAlIaUUpRoFUtJaBZHQDUzUBnzxw11fZQoaAZoCWgPQwhX0LTEyn9SwJSGlFKUaBVLa2gWR0A1Nd7v5P/JdX2UKGgGaAloD0MIAwZJn1bpb8CUhpRSlGgVS1doFkdANUT6rNnoPnV9lChoBmgJaA9DCAH6ff/mNmTAlIaUUpRoFUt2aBZHQDVKgzxgAp91fZQoaAZoCWgPQwh9W7BUF1NrwJSGlFKUaBVLRWgWR0A1SpkPMB6sdX2UKGgGaAloD0MIA83n3G3OY8CUhpRSlGgVS1xoFkdANVjz3AVO9HV9lChoBmgJaA9DCOnUlc/yH1rAlIaUUpRoFUtiaBZHQDVjh73PAwh1fZQoaAZoCWgPQwgJi4o4ncVawJSGlFKUaBVLPWgWR0A1aiItUXHjdX2UKGgGaAloD0MINpNvtjl2bcCUhpRSlGgVS09oFkdANWz+rELpinV9lChoBmgJaA9DCIUF9wMes17AlIaUUpRoFUtbaBZHQDWMJu2qkuZ1fZQoaAZoCWgPQwih9fBlomFqwJSGlFKUaBVLd2gWR0A1mqgh8pkPdX2UKGgGaAloD0MIP6phvyfZc8CUhpRSlGgVS3NoFkdANaGK/Efkm3V9lChoBmgJaA9DCL+ZmC4Ef3DAlIaUUpRoFUtOaBZHQDWjsyBTXJ51fZQoaAZoCWgPQwjQYFPn0bh3wJSGlFKUaBVLX2gWR0A1pD9wWFewdX2UKGgGaAloD0MIKAtfX+sDYsCUhpRSlGgVS1doFkdANa7sByS3b3V9lChoBmgJaA9DCAq6vaRxVnPAlIaUUpRoFUtiaBZHQDW0LUkOZst1fZQoaAZoCWgPQwg2yY/4FXNQwJSGlFKUaBVLS2gWR0A1ujps41gqdX2UKGgGaAloD0MIXDgQkoVOacCUhpRSlGgVS0BoFkdANbwazeGfw3V9lChoBmgJaA9DCCl1yTjGJHDAlIaUUpRoFUtsaBZHQDXGFwkxASp1fZQoaAZoCWgPQwhyFCAKZiZYwJSGlFKUaBVLaWgWR0A1z5EMLF4tdX2UKGgGaAloD0MIvCNjtfkOWcCUhpRSlGgVS1ZoFkdANdDrAxi5NHV9lChoBmgJaA9DCIS9iSE5cFPAlIaUUpRoFUtEaBZHQDXWKEWZZ0V1fZQoaAZoCWgPQwg0EwznGqNZwJSGlFKUaBVLcmgWR0A11twaR6njdX2UKGgGaAloD0MICcA/pUpVW8CUhpRSlGgVS31oFkdANeUhePaL43V9lChoBmgJaA9DCCMT8GskZlzAlIaUUpRoFUtOaBZHQDX1Lsa86FN1fZQoaAZoCWgPQwhfXRWoxYdTwJSGlFKUaBVLWmgWR0A19+VC5VfedX2UKGgGaAloD0MIPglszsG+VcCUhpRSlGgVS1RoFkdANfnTNMXaanV9lChoBmgJaA9DCJm7lpCPc2zAlIaUUpRoFU3NAmgWR0A1+5aePJaJdX2UKGgGaAloD0MIguUIGcgbW8CUhpRSlGgVS0FoFkdANftdqtYCAHV9lChoBmgJaA9DCAbZsnxdpFjAlIaUUpRoFUtAaBZHQDYAMmWt2cJ1fZQoaAZoCWgPQwjejQWFAVl2wJSGlFKUaBVLh2gWR0A2AWl/H5rQdX2UKGgGaAloD0MI3nNgOQIZecCUhpRSlGgVS2NoFkdANgjujRD1G3V9lChoBmgJaA9DCNi61Aj9S2TAlIaUUpRoFUtZaBZHQDYK3DvVmSR1fZQoaAZoCWgPQwjVXkTbMf92wJSGlFKUaBVLXmgWR0A2GO3DvVmSdX2UKGgGaAloD0MI1EfgDz8RaMCUhpRSlGgVS0ZoFkdANhss+V1OkHV9lChoBmgJaA9DCEm70cd8aFnAlIaUUpRoFUtTaBZHQDYhYFJQLux1fZQoaAZoCWgPQwj/l2vRgj5hwJSGlFKUaBVLVWgWR0A2I+T/yXlbdX2UKGgGaAloD0MINdB8zp13dcCUhpRSlGgVS29oFkdANjDSPU8V6HV9lChoBmgJaA9DCFwC8E8pcWrAlIaUUpRoFUtEaBZHQDY0rGza9K51fZQoaAZoCWgPQwiJX7GGC21jwJSGlFKUaBVLTGgWR0A2OpItlI3BdX2UKGgGaAloD0MIMVwdAHH+UMCUhpRSlGgVS09oFkdANj3aFmFrVXV9lChoBmgJaA9DCI0qw7gbbmHAlIaUUpRoFUtKaBZHQDY/3+MqBmR1fZQoaAZoCWgPQwg+7fDXZCtewJSGlFKUaBVLeWgWR0A2RUcn3L3cdX2UKGgGaAloD0MIoKhsWNNiYMCUhpRSlGgVS1ZoFkdANki/XXiBG3V9lChoBmgJaA9DCA5Pr5TlA2XAlIaUUpRoFUs8aBZHQDZNB/qgRK91fZQoaAZoCWgPQwgqkUQvoxFgwJSGlFKUaBVLUmgWR0A2UMEA5q/NdX2UKGgGaAloD0MI+8xZn3IDZcCUhpRSlGgVS3doFkdANlBoqTbFj3V9lChoBmgJaA9DCAtBDkrYrHTAlIaUUpRoFUtnaBZHQDZPfCQ9zOp1fZQoaAZoCWgPQwixUGua92JxwJSGlFKUaBVLaGgWR0A2U8kD6nBMdX2UKGgGaAloD0MIqvOo+L/bW8CUhpRSlGgVS09oFkdANlo2sJY1YXV9lChoBmgJaA9DCM/abRcaV37AlIaUUpRoFUtqaBZHQDZiSA6Mir11fZQoaAZoCWgPQwgS+S6lLnJVwJSGlFKUaBVLVGgWR0A2aNi6QNkOdX2UKGgGaAloD0MItXBZhU3dYcCUhpRSlGgVS1loFkdANmqJZW7vonV9lChoBmgJaA9DCLEWnwIgAXHAlIaUUpRoFUtRaBZHQDaBh2GIsRR1fZQoaAZoCWgPQwj8i6AxE1lgwJSGlFKUaBVLTGgWR0A2hONo8IRidX2UKGgGaAloD0MIDkktlEwDWMCUhpRSlGgVS0BoFkdANoSuU2UB4nV9lChoBmgJaA9DCK2m64muu13AlIaUUpRoFUtlaBZHQDaJaKUFB6d1fZQoaAZoCWgPQwgLDcSymZtXwJSGlFKUaBVLSWgWR0A2jdi2DxsmdX2UKGgGaAloD0MIFHe8yW/8W8CUhpRSlGgVS2toFkdANpR2St/4I3V9lChoBmgJaA9DCK3B+6rcgmjAlIaUUpRoFUtaaBZHQDaVDD0lJH11fZQoaAZoCWgPQwjMRBFSN4NgwJSGlFKUaBVLR2gWR0A2lyMDOkckdX2UKGgGaAloD0MIL9tOW6Pvd8CUhpRSlGgVS1loFkdANpibDuSfUXV9lChoBmgJaA9DCFBUNqwpg3PAlIaUUpRoFUtraBZHQDawF1SwW311fZQoaAZoCWgPQwh9QKAzaedLwJSGlFKUaBVLcWgWR0A2sebd8Aq/dWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 4,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cbebf30a2e3d01b116435cb46e017d00f13b7becb481bd2d7366443e71d31292
3
- size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1001438a35bc7fcadbfb5484539548244c654144c3c8d879e3708a8f4cc78d1
3
+ size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d25f5107951d61a8fd96667a5e6a6dabee18a5e525c6f7d87082746009893ab
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f53f881309570e871902c835192e1696849ecb657d888c7ce9ec9c89f396f58f
3
+ size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.5.0
4
- PyTorch: 1.11.0+cu113
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:87354ee709494fce15f661812c3bc294071f94b8e8718d6ee6b3b8959b18019c
3
- size 206927
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27d14c4858c4e8c77ecc20fa046df4b90020ea43dbaedeb2cc5c6a1a0539e8ac
3
+ size 261169
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 271.5149968884293, "std_reward": 16.73003821087636, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-03T14:01:41.574280"}
 
1
+ {"mean_reward": -135.43387024197727, "std_reward": 104.91524787316253, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T20:00:03.366988"}