Commit
•
85bd6ea
1
Parent(s):
3909518
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +17 -17
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -273.72 +/- 71.58
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5bc9451750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5bc94517e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5bc9451870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5bc9451900>", "_build": "<function ActorCriticPolicy._build at 0x7f5bc9451990>", "forward": "<function ActorCriticPolicy.forward at 0x7f5bc9451a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5bc9451ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5bc9451b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5bc9451bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5bc9451c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5bc9451cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5bc9451d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5bc945c340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683116033505747256, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAY4IT6YZog/rOVCPzUKZL/NTOG9Y0+wvQAAAAAAAAAA8D6xPnJfAz6ewhs/Q1+sv63Mib6OSTs9AAAAAAAAAAAzqV0+El2iPyp/9T47bd2+wdrpPQt2Aj4AAAAAAAAAAMroJj9iJBU+9MKVP//Yrr8BdHu/kAydvgAAAAAAAAAA5gcqvQkLhz8twWS+hJdlv66+cD4qkIM+AAAAAAAAAADmpXa9hiyyP+YZt75MavK9yGA7vf5eBr4AAAAAAAAAAHpQlz7jmIc/O9MEP9SQW7/GC5U+P6KtPgAAAAAAAAAAZhwXvOrJsT/FpNm82V1mvsJ7Gz2WyB29AAAAAAAAAACNa6+9etqvP42Lwb67Mw2+7owFPdmBoD0AAAAAAAAAAKt58r645YM/Nmf7viNvOL9P0Yy9ZQxxvgAAAAAAAAAA7XYmvspnuT+KBAG/CeBrvm9hWj1qctu9AAAAAAAAAACmrK6+FITBPmAZEb/2Upy/bxavPjbcoT0AAAAAAAAAANOZar7WXqE/Vmh5vmEJDL+RBri++E05vgAAAAAAAAAAABCkvSJmsD91IdW+6xAuvgQFDT7GsB8+AAAAAAAAAAB4LCi//jP7PiDPZr+PsY6/BFSQPkgBij0AAAAAAAAAAPZ1Ab8l9yI/9JZLvz7sgb82vnK7ArHavQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF91k+X7cfyMAWyUS1+MAXSUR0A5qhBZ6lchdX2UKGgGR8B23hbzK9wnaAdLimgIR0A5q2+fywwCdX2UKGgGR8BtLFOdoWYXaAdLS2gIR0A5vi/wiJO4dX2UKGgGR8Bk7BkCmuTzaAdLYGgIR0A5vmPYFqzrdX2UKGgGR8BV6dUsFt9AaAdLgWgIR0A5wXIU8FINdX2UKGgGR8BkMmOEM9bHaAdLV2gIR0A5wUC7sfJWdX2UKGgGR8BaQiJbdJrdaAdLaWgIR0A5yI8hcJMQdX2UKGgGR8Bq/bV2A5JcaAdLcmgIR0A51oRqXWvsdX2UKGgGR8Bvxyo86mwaaAdLa2gIR0A53WTot+TedX2UKGgGR8B5MCqioKlYaAdLcWgIR0A57SpR4yGjdX2UKGgGR8B9UP9BKL88aAdLbGgIR0A57qz7di2EdX2UKGgGR8B0aryOJcgRaAdLRWgIR0A57sYEW69TdX2UKGgGR8BNydCVrylOaAdLQ2gIR0A58bXHzYmLdX2UKGgGR8BYfGgnMMZxaAdLO2gIR0A5+qmj0tiAdX2UKGgGR8BxoKCcwxnGaAdLYmgIR0A5/0UoKD02dX2UKGgGR8ByYCkFfReDaAdLVWgIR0A6AmJ3xFy8dX2UKGgGR8BbD18kUsWgaAdLaWgIR0A6Ckxh2GIsdX2UKGgGR8BaPdXHR1HOaAdLRmgIR0A6CaPS2H+IdX2UKGgGR8BeXkI5YHPeaAdLRWgIR0A6EAc1fmcOdX2UKGgGR8BxzHNY8uBdaAdLcWgIR0A6Fz1bqyGBdX2UKGgGR8BoMmT9sJpnaAdLZmgIR0A6KBZZB9kSdX2UKGgGR8BU1wokRjBmaAdLS2gIR0A6LD0lJHy3dX2UKGgGR8BpFpNRFZxJaAdLVGgIR0A6Ls54nndPdX2UKGgGR8BiGORJVbRnaAdLQWgIR0A6NbI91U2ldX2UKGgGR8BYVsGcFyJbaAdLUWgIR0A6RJ7LMcIadX2UKGgGR8BjsO6bvw3HaAdLTmgIR0A6Qkj5bhWHdX2UKGgGR8Barc4ku6EraAdLlWgIR0A6RzCDVYp2dX2UKGgGR8BlgQZ88cMmaAdLh2gIR0A6T7GvOhTPdX2UKGgGR8BU4zmr8zhxaAdLUmgIR0A6Wfr8iwB6dX2UKGgGR8Br3v95yEL6aAdLaGgIR0A6abwBo24vdX2UKGgGR8BUN/WtlqagaAdLRWgIR0A6csw+MZP3dX2UKGgGR8Bg5/SKFZgYaAdLX2gIR0A6dbOeJ53UdX2UKGgGR8BannTRYzSDaAdLZmgIR0A6dmnO0LMLdX2UKGgGR8BPzAIppeu3aAdLTGgIR0A6f+OOsDGMdX2UKGgGR8BwK422oegdaAdLaGgIR0A6hauwHJLedX2UKGgGR8BYgMRlHz6KaAdLQWgIR0A6hX+ERJ2/dX2UKGgGR8Bb0ycG1QZXaAdLSGgIR0A6kNWU8mrsdX2UKGgGR8BXqbGBFuvVaAdLYmgIR0A6k4x1xKg7dX2UKGgGR8BR7tWIXTEzaAdLimgIR0A6kRpUPxx2dX2UKGgGR8BnBaQzUI9laAdLh2gIR0A6mGBFuvU0dX2UKGgGR8A9lFXq7iAEaAdLSmgIR0A6m2CNCJGfdX2UKGgGR8BuVoH3UQTVaAdLrGgIR0A6oKtxMnJDdX2UKGgGR8BkIM4rBj4IaAdLeWgIR0A6tE3sHB1tdX2UKGgGR8BsoZOi35N5aAdLfGgIR0A6xHTI/7iydX2UKGgGR8BgR9mrbQC0aAdLPGgIR0A6wssg+yJLdX2UKGgGR8BimNvl2eQNaAdLW2gIR0A6xs+FDfFadX2UKGgGR8Bek0wJw84haAdLUmgIR0A6yTURWcSXdX2UKGgGR8BpBex8lXzUaAdLRWgIR0A618+A3DNydX2UKGgGR8BiQeGh24d7aAdLQWgIR0A624AS39aVdX2UKGgGR8BfRenVG0/oaAdLZGgIR0A62/bCaZx8dX2UKGgGR8BE/wzk6tDEaAdLQmgIR0A64AeJYT0ydX2UKGgGR8BuveS0Sh8IaAdLg2gIR0A64cBU70WedX2UKGgGR8BguRiy6cy4aAdLYGgIR0A64qgAZKnOdX2UKGgGR8BWrM01qFh5aAdLQmgIR0A65ftx+8XfdX2UKGgGR8BzdTGbTc7AaAdLWmgIR0A67M7EHdGidX2UKGgGR8BkzoUi6g/UaAdLfGgIR0A68Ij4YaYNdX2UKGgGR8BWwUBGQSzxaAdLbWgIR0A684Ju2qkudX2UKGgGR8B8HfGrCFbnaAdLZmgIR0A6+gfEGZ/kdX2UKGgGR8Bn1wiHIp6QaAdLQGgIR0A7CMQEpy6udX2UKGgGR8BOmrn9vS+haAdLOGgIR0A7EoF3Y+SsdX2UKGgGR8BQ+n+l0o0AaAdLQ2gIR0A7GcfvF3pwdX2UKGgGR8BA7ITGo73gaAdLeGgIR0A7LIcinpB5dX2UKGgGR8BZAsIZ62ORaAdLTGgIR0A7PGrS3LFGdX2UKGgGR8BaT2ATZg5SaAdLeWgIR0A7PGd7OVxCdX2UKGgGR8BdesBltj0+aAdLXWgIR0A7PGACnxaxdX2UKGgGR8B2bh67dznzaAdLXmgIR0A7PxREWqLkdX2UKGgGR8B3CInc+JP7aAdLS2gIR0A7P7aZhKDkdX2UKGgGR8Bw7/+ERJ2/aAdLSGgIR0A7Q+Sr5qM4dX2UKGgGR8Bob5u0kWykaAdLa2gIR0A7R3b212JSdX2UKGgGR8BZGrJnxri3aAdLZWgIR0A7TCkoF3Y+dX2UKGgGR8Bx6YhfShJzaAdLjGgIR0A7VKHwgDA8dX2UKGgGR8Bq4nr2QGOdaAdLZGgIR0A7VbrC3w1BdX2UKGgGR8BdZXN9ph4MaAdLkWgIR0A7Xf+jua4MdX2UKGgGR8Ba6piy6cy4aAdLd2gIR0A7XhcqvvBrdX2UKGgGR8BdZiprDZUUaAdLUmgIR0A7caLn9vS/dX2UKGgGR8BuXAOFxn3+aAdLWWgIR0A7cWcz67/XdX2UKGgGR8BXzylabF0gaAdLQ2gIR0A7dOsT37DVdX2UKGgGR8BWRe0PYnOTaAdLQ2gIR0A7g1uivgWKdX2UKGgGR8Bdl/2K2rn1aAdLQGgIR0A7iczZYgaFdX2UKGgGR8BQk8YIjW07aAdLRmgIR0A7jPdVNpM6dX2UKGgGR8BW3APNFBppaAdLVWgIR0A7lMLncL0BdX2UKGgGR8BzIBQKrq+raAdLlWgIR0A7pCiyprDZdX2UKGgGR8B9sGdwvQF+aAdLYWgIR0A7pZ4fOlfrdX2UKGgGR8BWGKgZjx0/aAdLZ2gIR0A7q7mMfigkdX2UKGgGR8BqG/sgMc6vaAdLaWgIR0A7q3b212JSdX2UKGgGR8BgdnseGO+7aAdLV2gIR0A7rmIj4YaYdX2UKGgGR8Bbex2B8QZoaAdLT2gIR0A7rctoSL62dX2UKGgGR8BdSWwFC9h7aAdLU2gIR0A7sbSqlxffdX2UKGgGR8BuFzHbRF7VaAdLaGgIR0A7t6tknTiLdX2UKGgGR8BjNB7HAAQyaAdLYWgIR0A7t14Pf8/EdX2UKGgGR8BaawcDKYAsaAdLUGgIR0A7wXNTtLL7dX2UKGgGR8Bwvxr0rbxmaAdLVWgIR0A7yUahpQDWdX2UKGgGR8BxPof/3nIRaAdLZGgIR0A71K6FuejEdX2UKGgGR8Bi2BaA4GUwaAdLSGgIR0A73RfnfVI7dX2UKGgGR8BbqoSlFc6eaAdLYWgIR0A75HLidat+dX2UKGgGR8BeQKYJE6T4aAdLWmgIR0A751schkiEdX2UKGgGR8BNKrVnVXmvaAdLPWgIR0A76XKbKA8TdX2UKGgGR8BpguuA7PpqaAdLQmgIR0A75pSaVlf7dX2UKGgGR8Bhx170Fr2yaAdLYmgIR0A77G0eEIw/dX2UKGgGR8BT/2UnogV5aAdLRGgIR0A77inpB5X2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78521dc070a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78521dc07130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78521dc071c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78521dc07250>", "_build": "<function ActorCriticPolicy._build at 0x78521dc072e0>", "forward": "<function ActorCriticPolicy.forward at 0x78521dc07370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78521dc07400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78521dc07490>", "_predict": "<function ActorCriticPolicy._predict at 0x78521dc07520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78521dc075b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78521dc07640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78521dc076d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78523b95aec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693202347775241253, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADZCCz+hmKA+dkajP2xfqL+bgJC/rySivgAAAAAAAAAAOtgUvtldkD+/zEa/AVVOv8P5Tj4Ym2k+AAAAAAAAAAAAdbK9ryq1P2q4U7495BW+mF3evYb9k70AAAAAAAAAAA2b1D7cl/8+eeEMP1Jwnr+SUm2+Uj5TPgAAAAAAAAAAABQiPJDMsz9xgZM9B6kWvqNBoDyNQg4+AAAAAAAAAAA4j/K+d67IPwtPh7+UjrO+jKNRPwqwoj4AAAAAAAAAAADIkjzi77Q/YssZPw3UVDxjDLG8KRIDvgAAAAAAAAAAo4n6PtwhKT6qD1k/K+y0v+1KML+Kko6+AAAAAAAAAABNp4S9ruMSP4TLEL2fLo+/4TLLvV63Kb4AAAAAAAAAAIYdSD6L8q8/GQsuPzHXgb5KRLW9cjLlvQAAAAAAAAAAACGmPPjHcD8CdSa+aoANvyGwYj4YsCk9AAAAAAAAAADzPbq9eoUsPx43Ob6ww46/BtUQPCUSYb0AAAAAAAAAAEB6sr0Hdrw/l2MGv+MgDT5zX9g9dKhEPgAAAAAAAAAAzeOAPOutrT8gJo0+bznvvq8q5byqHwO+AAAAAAAAAACgWAM+CRGNP4TdGD/GZla/aScivsplz70AAAAAAAAAAJqTqDz0GrM/eCsxP0H6Jr5QXcK8EpEjvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIEkAo1DSgKMAWyUS2qMAXSUR0Azt/wy6+WXdX2UKGgGR8Bi6OWMS9M9aAdLT2gIR0Azw4uK4x1xdX2UKGgGR8BaB/bfxc3VaAdLa2gIR0Azw0JF9a2XdX2UKGgGR8BiUAE6kqMFaAdLdmgIR0AzyFOfukULdX2UKGgGR8BUE+L74zrNaAdLQmgIR0AzyN70Fr2ydX2UKGgGR8BVkn6InBtUaAdLQGgIR0AzylsguAZsdX2UKGgGR8BmCocJdB0IaAdLamgIR0Az1GgzxgAqdX2UKGgGR8BjOABxPwd9aAdLc2gIR0Az3CBf8dgfdX2UKGgGR8B3rml41P30aAdLcGgIR0Az75gPVd5ZdX2UKGgGR8Bs2iEHt4RmaAdLX2gIR0Az80U47zTXdX2UKGgGR8Beze+ZgG8maAdLVWgIR0Az80dilSCOdX2UKGgGR8BbxvN7jT8YaAdLWWgIR0Az90MgEEDAdX2UKGgGR8BQOip3os7NaAdLRmgIR0Az+icoYvWZdX2UKGgGR8BahzQ3PzFuaAdLVGgIR0Az/BSk0rLAdX2UKGgGR8Bz2ln5BTn8aAdLWWgIR0Az/vQnhKlIdX2UKGgGR8Bf32F36hxpaAdLZmgIR0A0EMy8BdUsdX2UKGgGR8BDVYYBNmDlaAdLTGgIR0A0EBsQ/X5GdX2UKGgGR8BqtvtWuHN5aAdLUmgIR0A0Ge/5+H8CdX2UKGgGR8Bat+N96TnraAdLT2gIR0A0InH/95yEdX2UKGgGR8BcdqFh5PdmaAdLX2gIR0A0JnctXgccdX2UKGgGR8B2MVvYODraaAdLY2gIR0A0JcEvCdjHdX2UKGgGR8Bllp3V09yMaAdLPmgIR0A0KqyGBWgfdX2UKGgGR8Bi3BzLfUF0aAdLfGgIR0A0Mk+5e7cxdX2UKGgGR8BVz9KVY6n0aAdLTWgIR0A0PBguyu6mdX2UKGgGR8Bt/QMa0hNeaAdLT2gIR0A0Pf8uSOindX2UKGgGR8BsNuz4UN8WaAdLRWgIR0A0P8La24NJdX2UKGgGR8BgA+xMWXTmaAdLWmgIR0A0TodMj/uLdX2UKGgGR8B0wd3gUDdQaAdLWGgIR0A0UX4TK1XvdX2UKGgGR8BpBk5IYm9haAdLi2gIR0A0U6f8MuvmdX2UKGgGR8BjWyeumrKeaAdLTWgIR0A0XmXgLqlhdX2UKGgGR8B6ELV6NVBEaAdLg2gIR0A0YGEf1YhddX2UKGgGR8BjOQZAIIGAaAdLRGgIR0A0bzWf9P1tdX2UKGgGR8BhfynrIHTraAdLRmgIR0A0bIEbHZK4dX2UKGgGR8BZahbfP5YYaAdLSGgIR0A0b2g3974SdX2UKGgGR8BcLPek56t1aAdLfWgIR0A0dgOjIq9XdX2UKGgGR8BT7tHxz7uVaAdLSWgIR0A0fRKpT/ACdX2UKGgGR8Bak2Xw9aEBaAdLQWgIR0A0f5NGmUGFdX2UKGgGR8BeCslLOAy3aAdLb2gIR0A0f0YTCcgAdX2UKGgGR8BmWYomXw9aaAdLXmgIR0A0gWpqASWadX2UKGgGR8BsAXRCx/utaAdLOmgIR0A0i5zYEnstdX2UKGgGR8B/h4Z3s5XEaAdLeGgIR0A0kJ5VwPy1dX2UKGgGR8BvocFINEw4aAdLXGgIR0A0nLwF1SwXdX2UKGgGR8B2mBWsA/9paAdLVmgIR0A0o6fapPykdX2UKGgGR8BY+vHPu5SWaAdLaGgIR0A0plIEr5IpdX2UKGgGR8Btw/1e0G/vaAdLYmgIR0A0tQ6ZH/cWdX2UKGgGR8Bz6/3QD3dsaAdLWmgIR0A0t8w5/9YPdX2UKGgGR8BW7jf3vhIfaAdLPmgIR0A0vAuZkTYedX2UKGgGR8BUW+nyd4FBaAdLQWgIR0A0vp9qk/KRdX2UKGgGR8BduH6AOJ+EaAdLTGgIR0A0wGsFMZgpdX2UKGgGR8Bovwn0Cih4aAdLTGgIR0A0y3Gn4wh4dX2UKGgGR8BeuD8HfMwDaAdLYmgIR0A0z+/gzguRdX2UKGgGR8B4zJ7x/d6+aAdLZGgIR0A0zwuuieundX2UKGgGR8B90nMcIZ62aAdLZWgIR0A00ri2lVLjdX2UKGgGR8BnbB2OhkAhaAdLY2gIR0A03vPC2tuDdX2UKGgGR8Bh/WS0Sh8IaAdLT2gIR0A04DneSB9UdX2UKGgGR8BQBajJuEVWaAdLRWgIR0A04j7Q9ic5dX2UKGgGR8Bsc7m6oVEeaAdLZ2gIR0A08uuzQeFMdX2UKGgGR8BR4C+HrQgLaAdLTGgIR0A087ngYP5IdX2UKGgGR8BerXf2saKlaAdLPWgIR0A0+bL2YfGNdX2UKGgGR8BidbvPTodNaAdLnWgIR0A0+jFQ2uPndX2UKGgGR8Bl8BfF72L6aAdLTmgIR0A1BgWJrLyMdX2UKGgGR8BboBv3rUsnaAdLT2gIR0A1DoMrmQr+dX2UKGgGR8BkUvSOR1YAaAdLNWgIR0A1EtnPE87qdX2UKGgGR8BxrRRO1v2oaAdLXGgIR0A1EQf6oESvdX2UKGgGR8BTVPra/RE4aAdLQWgIR0A1H5Rjz7MxdX2UKGgGR8By8chzNliCaAdLe2gIR0A1HohIOH32dX2UKGgGR8BmlkBIWgvlaAdLVmgIR0A1IQNTcZccdX2UKGgGR8BmH9/Ue+23aAdLZGgIR0A1IdbgTAWSdX2UKGgGR0ATheeFtbcHaAdLX2gIR0A1LXrt3OfNdX2UKGgGR8BNaNvXK8tgaAdLQWgIR0A1MZxJd0JXdX2UKGgGR8BeqOTNdJJ5aAdLYWgIR0A1Mkhib2DhdX2UKGgGR8BSC+vyLAHnaAdLOmgIR0A1MhOxjawmdX2UKGgGR8BSAIk7fYSQaAdLQmgIR0A1M4dIXj2jdX2UKGgGR8B51DOQhfShaAdLVmgIR0A1Nhy8zyjIdX2UKGgGR8B+BSo/A0sOaAdLaGgIR0A1NY9gWrOrdX2UKGgGR8BadUNSZSeiaAdLQmgIR0A1RIHC4z7/dX2UKGgGR8BvKWQfZElWaAdLTWgIR0A1W+XqqwQldX2UKGgGR8BpIvjhky1vaAdLamgIR0A1XqMm4RVZdX2UKGgGR8BfcxshxHXmaAdLRmgIR0A1Yuq3mV7hdX2UKGgGR8BovPA9FF2FaAdLX2gIR0A1a6kIomXxdX2UKGgGR8BaM35aePJaaAdLX2gIR0A1ba/RE4NrdX2UKGgGR8BibrO5avA5aAdLUGgIR0A1b81n/T9bdX2UKGgGR8BkEBsVLzwuaAdLXWgIR0A1elP8AJb/dX2UKGgGR8BX/3ARChN/aAdLS2gIR0A1ewNsnAqNdX2UKGgGR8Ba4TdcjZ+QaAdLVWgIR0A1hNjLB9CvdX2UKGgGR8BivT/jsD4haAdLV2gIR0A1iEm6XjU/dX2UKGgGR8B7YxIH1OCYaAdLa2gIR0A1iUd7v5P/dX2UKGgGR8B6+3+CK77LaAdLXGgIR0A1j9ph4MWodX2UKGgGR8Bs/WrhisnzaAdLW2gIR0A1jo/zJ6ppdX2UKGgGR8Bgfah8IAwPaAdLcWgIR0A1m9jPOY6XdX2UKGgGR8BWaQUcn3L3aAdLcmgIR0A1oLfk3juKdX2UKGgGR8BuYuvZAY51aAdLWWgIR0A1s/ACW/rTdX2UKGgGR8Be/dlqagEmaAdLdGgIR0A1ttlqagEmdX2UKGgGR8Bh7QXKr7wbaAdLXmgIR0A1vj8k2P1ddX2UKGgGR8BVLoMfA9FGaAdLS2gIR0A1w5ckdFOPdX2UKGgGR8BxB/sRg7YDaAdLVmgIR0A1w6ZYxL00dX2UKGgGR8BomsTcqOLjaAdLbmgIR0A1y7/n4fwJdX2UKGgGR8BvE+Lgn+hoaAdLY2gIR0A1zocJdB0IdX2UKGgGR8BT2+6y0KJEaAdLRGgIR0A100P6KtPpdX2UKGgGR8BeH8UVSGahaAdLRGgIR0A10hwVCXyBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:020a9748d86abf29c2ed857150739e8944dc918a2372ff40a3d856bd8e8867e7
|
3 |
+
size 146601
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,13 +45,13 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78521dc070a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78521dc07130>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78521dc071c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78521dc07250>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78521dc072e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78521dc07370>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78521dc07400>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78521dc07490>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78521dc07520>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78521dc075b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78521dc07640>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78521dc076d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78523b95aec0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1693202347775241253,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADZCCz+hmKA+dkajP2xfqL+bgJC/rySivgAAAAAAAAAAOtgUvtldkD+/zEa/AVVOv8P5Tj4Ym2k+AAAAAAAAAAAAdbK9ryq1P2q4U7495BW+mF3evYb9k70AAAAAAAAAAA2b1D7cl/8+eeEMP1Jwnr+SUm2+Uj5TPgAAAAAAAAAAABQiPJDMsz9xgZM9B6kWvqNBoDyNQg4+AAAAAAAAAAA4j/K+d67IPwtPh7+UjrO+jKNRPwqwoj4AAAAAAAAAAADIkjzi77Q/YssZPw3UVDxjDLG8KRIDvgAAAAAAAAAAo4n6PtwhKT6qD1k/K+y0v+1KML+Kko6+AAAAAAAAAABNp4S9ruMSP4TLEL2fLo+/4TLLvV63Kb4AAAAAAAAAAIYdSD6L8q8/GQsuPzHXgb5KRLW9cjLlvQAAAAAAAAAAACGmPPjHcD8CdSa+aoANvyGwYj4YsCk9AAAAAAAAAADzPbq9eoUsPx43Ob6ww46/BtUQPCUSYb0AAAAAAAAAAEB6sr0Hdrw/l2MGv+MgDT5zX9g9dKhEPgAAAAAAAAAAzeOAPOutrT8gJo0+bznvvq8q5byqHwO+AAAAAAAAAACgWAM+CRGNP4TdGD/GZla/aScivsplz70AAAAAAAAAAJqTqDz0GrM/eCsxP0H6Jr5QXcK8EpEjvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIEkAo1DSgKMAWyUS2qMAXSUR0Azt/wy6+WXdX2UKGgGR8Bi6OWMS9M9aAdLT2gIR0Azw4uK4x1xdX2UKGgGR8BaB/bfxc3VaAdLa2gIR0Azw0JF9a2XdX2UKGgGR8BiUAE6kqMFaAdLdmgIR0AzyFOfukULdX2UKGgGR8BUE+L74zrNaAdLQmgIR0AzyN70Fr2ydX2UKGgGR8BVkn6InBtUaAdLQGgIR0AzylsguAZsdX2UKGgGR8BmCocJdB0IaAdLamgIR0Az1GgzxgAqdX2UKGgGR8BjOABxPwd9aAdLc2gIR0Az3CBf8dgfdX2UKGgGR8B3rml41P30aAdLcGgIR0Az75gPVd5ZdX2UKGgGR8Bs2iEHt4RmaAdLX2gIR0Az80U47zTXdX2UKGgGR8Beze+ZgG8maAdLVWgIR0Az80dilSCOdX2UKGgGR8BbxvN7jT8YaAdLWWgIR0Az90MgEEDAdX2UKGgGR8BQOip3os7NaAdLRmgIR0Az+icoYvWZdX2UKGgGR8BahzQ3PzFuaAdLVGgIR0Az/BSk0rLAdX2UKGgGR8Bz2ln5BTn8aAdLWWgIR0Az/vQnhKlIdX2UKGgGR8Bf32F36hxpaAdLZmgIR0A0EMy8BdUsdX2UKGgGR8BDVYYBNmDlaAdLTGgIR0A0EBsQ/X5GdX2UKGgGR8BqtvtWuHN5aAdLUmgIR0A0Ge/5+H8CdX2UKGgGR8Bat+N96TnraAdLT2gIR0A0InH/95yEdX2UKGgGR8BcdqFh5PdmaAdLX2gIR0A0JnctXgccdX2UKGgGR8B2MVvYODraaAdLY2gIR0A0JcEvCdjHdX2UKGgGR8Bllp3V09yMaAdLPmgIR0A0KqyGBWgfdX2UKGgGR8Bi3BzLfUF0aAdLfGgIR0A0Mk+5e7cxdX2UKGgGR8BVz9KVY6n0aAdLTWgIR0A0PBguyu6mdX2UKGgGR8Bt/QMa0hNeaAdLT2gIR0A0Pf8uSOindX2UKGgGR8BsNuz4UN8WaAdLRWgIR0A0P8La24NJdX2UKGgGR8BgA+xMWXTmaAdLWmgIR0A0TodMj/uLdX2UKGgGR8B0wd3gUDdQaAdLWGgIR0A0UX4TK1XvdX2UKGgGR8BpBk5IYm9haAdLi2gIR0A0U6f8MuvmdX2UKGgGR8BjWyeumrKeaAdLTWgIR0A0XmXgLqlhdX2UKGgGR8B6ELV6NVBEaAdLg2gIR0A0YGEf1YhddX2UKGgGR8BjOQZAIIGAaAdLRGgIR0A0bzWf9P1tdX2UKGgGR8BhfynrIHTraAdLRmgIR0A0bIEbHZK4dX2UKGgGR8BZahbfP5YYaAdLSGgIR0A0b2g3974SdX2UKGgGR8BcLPek56t1aAdLfWgIR0A0dgOjIq9XdX2UKGgGR8BT7tHxz7uVaAdLSWgIR0A0fRKpT/ACdX2UKGgGR8Bak2Xw9aEBaAdLQWgIR0A0f5NGmUGFdX2UKGgGR8BeCslLOAy3aAdLb2gIR0A0f0YTCcgAdX2UKGgGR8BmWYomXw9aaAdLXmgIR0A0gWpqASWadX2UKGgGR8BsAXRCx/utaAdLOmgIR0A0i5zYEnstdX2UKGgGR8B/h4Z3s5XEaAdLeGgIR0A0kJ5VwPy1dX2UKGgGR8BvocFINEw4aAdLXGgIR0A0nLwF1SwXdX2UKGgGR8B2mBWsA/9paAdLVmgIR0A0o6fapPykdX2UKGgGR8BY+vHPu5SWaAdLaGgIR0A0plIEr5IpdX2UKGgGR8Btw/1e0G/vaAdLYmgIR0A0tQ6ZH/cWdX2UKGgGR8Bz6/3QD3dsaAdLWmgIR0A0t8w5/9YPdX2UKGgGR8BW7jf3vhIfaAdLPmgIR0A0vAuZkTYedX2UKGgGR8BUW+nyd4FBaAdLQWgIR0A0vp9qk/KRdX2UKGgGR8BduH6AOJ+EaAdLTGgIR0A0wGsFMZgpdX2UKGgGR8Bovwn0Cih4aAdLTGgIR0A0y3Gn4wh4dX2UKGgGR8BeuD8HfMwDaAdLYmgIR0A0z+/gzguRdX2UKGgGR8B4zJ7x/d6+aAdLZGgIR0A0zwuuieundX2UKGgGR8B90nMcIZ62aAdLZWgIR0A00ri2lVLjdX2UKGgGR8BnbB2OhkAhaAdLY2gIR0A03vPC2tuDdX2UKGgGR8Bh/WS0Sh8IaAdLT2gIR0A04DneSB9UdX2UKGgGR8BQBajJuEVWaAdLRWgIR0A04j7Q9ic5dX2UKGgGR8Bsc7m6oVEeaAdLZ2gIR0A08uuzQeFMdX2UKGgGR8BR4C+HrQgLaAdLTGgIR0A087ngYP5IdX2UKGgGR8BerXf2saKlaAdLPWgIR0A0+bL2YfGNdX2UKGgGR8BidbvPTodNaAdLnWgIR0A0+jFQ2uPndX2UKGgGR8Bl8BfF72L6aAdLTmgIR0A1BgWJrLyMdX2UKGgGR8BboBv3rUsnaAdLT2gIR0A1DoMrmQr+dX2UKGgGR8BkUvSOR1YAaAdLNWgIR0A1EtnPE87qdX2UKGgGR8BxrRRO1v2oaAdLXGgIR0A1EQf6oESvdX2UKGgGR8BTVPra/RE4aAdLQWgIR0A1H5Rjz7MxdX2UKGgGR8By8chzNliCaAdLe2gIR0A1HohIOH32dX2UKGgGR8BmlkBIWgvlaAdLVmgIR0A1IQNTcZccdX2UKGgGR8BmH9/Ue+23aAdLZGgIR0A1IdbgTAWSdX2UKGgGR0ATheeFtbcHaAdLX2gIR0A1LXrt3OfNdX2UKGgGR8BNaNvXK8tgaAdLQWgIR0A1MZxJd0JXdX2UKGgGR8BeqOTNdJJ5aAdLYWgIR0A1Mkhib2DhdX2UKGgGR8BSC+vyLAHnaAdLOmgIR0A1MhOxjawmdX2UKGgGR8BSAIk7fYSQaAdLQmgIR0A1M4dIXj2jdX2UKGgGR8B51DOQhfShaAdLVmgIR0A1Nhy8zyjIdX2UKGgGR8B+BSo/A0sOaAdLaGgIR0A1NY9gWrOrdX2UKGgGR8BadUNSZSeiaAdLQmgIR0A1RIHC4z7/dX2UKGgGR8BvKWQfZElWaAdLTWgIR0A1W+XqqwQldX2UKGgGR8BpIvjhky1vaAdLamgIR0A1XqMm4RVZdX2UKGgGR8BfcxshxHXmaAdLRmgIR0A1Yuq3mV7hdX2UKGgGR8BovPA9FF2FaAdLX2gIR0A1a6kIomXxdX2UKGgGR8BaM35aePJaaAdLX2gIR0A1ba/RE4NrdX2UKGgGR8BibrO5avA5aAdLUGgIR0A1b81n/T9bdX2UKGgGR8BkEBsVLzwuaAdLXWgIR0A1elP8AJb/dX2UKGgGR8BX/3ARChN/aAdLS2gIR0A1ewNsnAqNdX2UKGgGR8Ba4TdcjZ+QaAdLVWgIR0A1hNjLB9CvdX2UKGgGR8BivT/jsD4haAdLV2gIR0A1iEm6XjU/dX2UKGgGR8B7YxIH1OCYaAdLa2gIR0A1iUd7v5P/dX2UKGgGR8B6+3+CK77LaAdLXGgIR0A1j9ph4MWodX2UKGgGR8Bs/WrhisnzaAdLW2gIR0A1jo/zJ6ppdX2UKGgGR8Bgfah8IAwPaAdLcWgIR0A1m9jPOY6XdX2UKGgGR8BWaQUcn3L3aAdLcmgIR0A1oLfk3juKdX2UKGgGR8BuYuvZAY51aAdLWWgIR0A1s/ACW/rTdX2UKGgGR8Be/dlqagEmaAdLdGgIR0A1ttlqagEmdX2UKGgGR8Bh7QXKr7wbaAdLXmgIR0A1vj8k2P1ddX2UKGgGR8BVLoMfA9FGaAdLS2gIR0A1w5ckdFOPdX2UKGgGR8BxB/sRg7YDaAdLVmgIR0A1w6ZYxL00dX2UKGgGR8BomsTcqOLjaAdLbmgIR0A1y7/n4fwJdX2UKGgGR8BvE+Lgn+hoaAdLY2gIR0A1zocJdB0IdX2UKGgGR8BT2+6y0KJEaAdLRGgIR0A100P6KtPpdX2UKGgGR8BeH8UVSGahaAdLRGgIR0A10hwVCXyBdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 4,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dff0855429fb1332f30a44b050f4b517f67538b9968c23f9dad3b91c2e89dd6b
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b86e3f90612c90ab1d46fb548fdb3e8f279c9b4d4ddf7719439e89407241203d
|
3 |
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.0.
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ae2771f1822ae9d2ff4b50046d3b928e20576f8f09335a467cc75086c61457c
|
3 |
+
size 189145
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -273.7151850882918, "std_reward": 71.5768709901317, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-28T05:59:33.950274"}
|