ThomasSimonini HF staff commited on
Commit
3488b9b
1 Parent(s): e119150

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,56 +1,36 @@
1
  ---
 
2
  tags:
 
3
  - deep-reinforcement-learning
4
  - reinforcement-learning
5
  - stable-baselines3
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
- # ppo-Walker2DBulletEnv-v0
8
 
9
- This is a pre-trained model of a PPO agent playing Walker2DBulletEnv-v0 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.
 
 
10
 
11
- ### Usage (with Stable-baselines3)
12
- Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
13
- ```
14
- pip install stable-baselines3
15
- pip install huggingface_sb3
16
- ```
17
 
18
- Then, you can use the model like this:
19
 
20
  ```python
21
-
22
- import gym
23
- import pybullet_envs
24
-
25
  from huggingface_sb3 import load_from_hub
26
 
27
- from stable_baselines3 import PPO
28
- from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
29
- from stable_baselines3.common.evaluation import evaluate_policy
30
-
31
- # Retrieve the model from the hub
32
- ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
33
- ## filename = name of the model zip file from the repository
34
- repo_id = "ThomasSimonini/ppo-Walker2DBulletEnv-v0"
35
- checkpoint = load_from_hub(repo_id = repo_id, filename="ppo-Walker2DBulletEnv-v0.zip")
36
- model = PPO.load(checkpoint)
37
-
38
- # Load the saved statistics
39
- stats_path = load_from_hub(repo_id = repo_id, filename="vec_normalize.pkl")
40
-
41
- eval_env = DummyVecEnv([lambda: gym.make("Walker2DBulletEnv-v0")])
42
- eval_env = VecNormalize.load(stats_path, eval_env)
43
- # do not update them at test time
44
- eval_env.training = False
45
- # reward normalization is not needed at test time
46
- eval_env.norm_reward = False
47
-
48
- from stable_baselines3.common.evaluation import evaluate_policy
49
-
50
- mean_reward, std_reward = evaluate_policy(model, eval_env)
51
- print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
52
-
53
  ```
54
-
55
- ### Evaluation Results
56
- Mean_reward: 2371.90 +/- 16.50
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
+ - Walker2DBulletEnv-v0
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 35.11 +/- 4.51
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Walker2DBulletEnv-v0
20
+ type: Walker2DBulletEnv-v0
21
  ---
 
22
 
23
+ # **PPO** Agent playing **Walker2DBulletEnv-v0**
24
+ This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
 
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
 
 
 
 
29
 
 
30
 
31
  ```python
32
+ from stable_baselines3 import ...
 
 
 
33
  from huggingface_sb3 import load_from_hub
34
 
35
+ ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ```
 
 
 
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c03269680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c03269710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c032697a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c03269830>", "_build": "<function ActorCriticPolicy._build at 0x7f8c032698c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8c03269950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c032699e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8c03269a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c03269b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c03269b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c03269c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8c032b88a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 8192, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657881064.5540903, "learning_rate": 3e-05, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAf3WRvQAAAAD30ok4wqpKvwAAAAANbQe/AAAAAEQVar+PEZ6/FIr9v+DJ/T30S3I/bA0OP+umPr7yN6O+XHKsv8wCir9WejO/kZRevxVF4L8+Kkw/jjiHPyS5D78AAAAA99KJOCFDT74AAAAANLuQvwAAAAAlu86/X225v4wii79w3J6+JdEHv1XZC73JnQs/+XGkv5GaCsCcknq/oBnXP7rA4r5Bd6M/PipMP444hz9cScq9AAAAAPfSiTgsVEc/AAAAACL60z0AAAAAnS5lv6nqDMDimlS/18ZXP5RzOD/mVZI/AoYjPzQc775FdBK/k/qfv7Hmhj5Ocnm/asN6vz4qTD+OOIc/2JfiPgAAAAD30ok4Tlq7vgAAAAC6sl8/AAAAAEi8Rj/4jvY+vvXOveFOLT+BSDg/F+tkv/FZCb+wXCk/n/rWPmCq1T7FU0K/AFLHPgKDND8+Kkw/jjiHP0nPVz4AAAAA99KJOFaiH78AAAAAjXlZPQAAAAAQ1aa8jHtcPQHbtr//JGA9Q/u1PhZ2rL6oPTc+AcEcv4qv478lZZc+hHJ4P7FV5D+VaO++PipMP444hz9HTlHAAAAAAPfSiTjmCCC/AAAAALPglMAAAAAAZg/zvxeDpr5svSXAksRBwAOTNL86Y+o/pk31P2XXF8CvCCDArXwDwArXjb+xhwNAwOvdPj4qTD+OOIc/GilOvQAAAAD30ok4yOCvvwAAAAAChaO+AAAAAEKva71NkFA/127TPinXCb+Ksa2/ALrSPmSH5D90k/4+KWDtvesNDL8R9/I8PAgGPj68CT8+Kkw/jjiHP4m8378AAAAA99KJOKxYm78AAAAAMV0GwAAAAAChOYK/EdFMP3OP8D49EUXA2BAHwDMZiD4Bw4nAoz0svbfsZj2KhOC/wgmRvz6glz/XnDM/ZH+gv1FUcr/Nwr4+AAAAAPfSiTjSEbU9AAAAADl4Rz8AAAAAB2WPPkeEKT6XGQi+U2GZPvdHQD4FMwm/9xSMvtutkL40ASy/7Rg9PxnIvz+6AD+/HJ4qvz4qTD+OOIc/qPlMPwAAAAD30ok45NAmvgAAAAAOiw4+AAAAAJIMMz/cttw+yQ8tv3WQKD/7Cyo/RPDgvvvpZL/5Sba+U3JCv9bLZT8yVWM/DvI4v0/Wir1kf6C/UVRyvwjtcT8AAAAA99KJONcjyT4AAAAAorIyPwAAAAB1DoQ/EFU3P2XpEb3RJVo/inCePp/fjr8uXG49ozpzPz0IpL6fE10//p+GPzGim7+/Lsw9ZH+gv1FUcr8EnY+/AAAAAPfSiTiLj4K/AAAAAKtTfL8AAAAAaqNwv3SZBT/0eaQ+Jhq0v3oXa7/n2Fg/MtdlvxPLpb2w8i4+RmN/v6aPKb/op5Q/SPmKPz4qTD+OOIc/q+hxPwAAAAD30ok4b6egPwAAAABpzDk/AAAAgFlGiz9GRUw/Ft4jP9zE5z6kY/0+rbhbv9qakb7fmII/X1PYPu2lOj/KzY4/6gV+vwnVg75kf6C/UVRyv925CL8AAAAA99KJOJn7Wb8AAAAA1Ee8vgAAAADsZa+/RiQuvxM4Dz8lsES/JjKiv7P7QzxPBZe9RrspP2x11D4l2ei/P8yBv/IWx7+Nz4+/PipMP1FUcr+7TJs+AAAAAPfSiTiOMJ6/AAAAAMm3PD4AAAAAIW/xPee89L15Bue/rsYtP6tvND/PEpW/EtHfvOuW7L4wBh7AWJ2XPktSE0AJA0i+ofsOvz4qTD9RVHK/bSBTPwAAAAD30ok4e06QPgAAAAB2hgA+AAAAADX0Uz/up4g+1hRjv3+0Lj+gPtI+4krwvZi2sz4zUf++LVjYv/SfbT8y2R5AcVmMv3wDq75kf6C/jjiHP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFW4g/AAAAAKWZeT8AAAAAe51cPQAAAACMYHU/AAAAAJOYdj8AAAAATiPJvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWeCGPwAAAADCLW4/AAAAAJtMXL0AAAAALRp8PwAAAADBp4I/AAAAAJn15r0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDg3fD8AAAAA4gF6PwAAAADoBqq8AAAAAObahT8AAAAA+3h3PwAAAACYNkk9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5kn8/AAAAAKL7bT8AAAAAK1hBPQAAAABDn4k/AAAAAHhXdj8AAAAAAr8OuwAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyI2IPwAAAADyMoM/AAAAAPcVPT0AAAAAnTSGPwAAAAD4P4c/AAAAADBJ3L0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLLxgD8AAAAAUueBPwAAAADakM69AAAAAICxhj8AAAAABVF2PwAAAABqnz69AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA27Xc/AAAAAGwGeT8AAAAAjM7tPQAAAAAjc3A/AAAAAGi3hj8AAAAAnvynPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHiSGPwAAAABiZm8/AAAAADTE/TwAAAAAdDuJPwAAAACFy3s/AAAAADx5Wj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAyZcT8AAAAA92SEPwAAAACwB7+9AAAAAMOohj8AAAAAWveEPwAAAACPchu9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALpIk/AAAAABnMhz8AAAAAf/yGPAAAAACcWHU/AAAAAP1CiT8AAAAAnLXPPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAdeIPwAAAADOV3U/AAAAAA3W2b0AAAAANC+GPwAAAADEuYE/AAAAAGxbhr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEVUeT8AAAAAgCh6PwAAAABy+Yo9AAAAAA9GgD8AAAAAhViHPwAAAABoTvS9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID83Ho/AAAAABzgfz8AAAAAdXqmPQAAAAAFsHw/AAAAAGklgj8AAAAAEdYRvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAa4x8PwAAAADl1XQ/AAAAAE2ZHD0AAAAAF7lzPwAAAABKG30/AAAAAB/MyD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEGTdT8AAAAA6J9zPwAAAABiTre9AAAAAGi2hz8AAAAAVONsPwAAAAAUZ+w9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOSHE/AAAAAAg8ej8AAAAApj0quwAAAADR+W4/AAAAANZMeT8AAAAAGmZovQAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": -0.6384000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDrXSqlxffKMAWyUSxWMAXSUR0BBQqw6hg3MdX2UKGgGR0BARxFy7wrlaAdLHWgIR0BBQv7FbVz7dX2UKGgGR0AtxEGZ/kNnaAdLCWgIR0BBQywnpjc3dX2UKGgGR0AqVVTaTOgQaAdLB2gIR0BBRRzzVc2SdX2UKGgGR0AzUstCiRGMaAdLDmgIR0BBRUrkKeCkdX2UKGgGR0BA3Myad+XraAdLGmgIR0BBS9j5KvmpdX2UKGgGR0A7iDc/MW43aAdLFGgIR0BBS8vugHu7dX2UKGgGR0A735byH2ytaAdLFmgIR0BBS+9Jz1brdX2UKGgGR0A+etlI3BHkaAdLG2gIR0BBTA7gbZOBdX2UKGgGR0A7PpHZsbeeaAdLFmgIR0BBUcd5prULdX2UKGgGR0A2N21lXiiqaAdLD2gIR0BBV43Ns3yadX2UKGgGR0AyqGwA2hqTaAdLDmgIR0BBWashgVoIdX2UKGgGR0AnPjx0+1SgaAdLB2gIR0BBX6LOzIFNdX2UKGgGR0A7RDL8rI5paAdLIWgIR0BBY1eBxxT9dX2UKGgGR0A4V5k9U0emaAdLFGgIR0BBZT7di2DydX2UKGgGR0A3478ejmCAaAdLE2gIR0BBaVYyO7xvdX2UKGgGR0A2R6lLvkR0aAdLEGgIR0BBa3Q+lj3FdX2UKGgGR0AyIVHnU2DQaAdLCmgIR0BBbZ6t1ZDBdX2UKGgGR0A6nG5+YtxuaAdLFmgIR0BBb8CHRCyAdX2UKGgGR0A5ugaFVT73aAdLFmgIR0BBcmJ3xFy8dX2UKGgGR0BD7t+TeO4oaAdLImgIR0BBdPoV2zOYdX2UKGgGR0A6N+iJwbVCaAdLGWgIR0BBeV7x/d6+dX2UKGgGR0BAo3SBshxHaAdLHGgIR0BBe5NoJzDGdX2UKGgGR0A50dsBQvYfaAdLF2gIR0BBe63RXwLFdX2UKGgGR0A/ac4YJmdzaAdLGGgIR0BBfbUXpGF0dX2UKGgGR0A9aahHskY5aAdLGWgIR0BBf9XDFZPmdX2UKGgGR0A3ql0YCQtBaAdLE2gIR0BBgAiV0Lc9dX2UKGgGR0BBAUFKTSssaAdLHmgIR0BBgliBoVVQdX2UKGgGR0A04dj5KvmpaAdLD2gIR0BBhEEC/47BdX2UKGgGR0AulOiWVu76aAdLCWgIR0BBhk9ECvHMdX2UKGgGR0A8nvS+g13uaAdLFmgIR0BBkMCkoF3ZdX2UKGgGR0AwlJGe+VTraAdLCmgIR0BBkK9Gqgh9dX2UKGgGR0AwVL7Gecx1aAdLCWgIR0BBlR8lXzUadX2UKGgGR0A6JyFwkxATaAdLGGgIR0BBm4eLehwmdX2UKGgGR0A5Cr9ETg2qaAdLFmgIR0BBm6InBtUGdX2UKGgGR0A6K4jKPn0TaAdLFWgIR0BBnneaa1CxdX2UKGgGR0A4U5M10knkaAdLFWgIR0BBpU1Q66redX2UKGgGR0A8FqMWGh24aAdLGGgIR0BBp4oy9EkTdX2UKGgGR0A4mAqur6tUaAdLEWgIR0BBp40/GEPEdX2UKGgGR0At6spXp4bCaAdLCWgIR0BBr7rC3w1BdX2UKGgGR0A/+O5J9RaYaAdLHmgIR0BBr99MK1G9dX2UKGgGR0A9ImEGqxTsaAdLGGgIR0BBsho/RmbtdX2UKGgGR0A1wqLjxTbWaAdLFGgIR0BBtChew9q2dX2UKGgGR0A7HstCiRGMaAdLFWgIR0BBtEzwc5sCdX2UKGgGR0A92HmRvFWGaAdLGmgIR0BBuJkf9xZMdX2UKGgGR0BBC1LBbfP5aAdLHGgIR0BButRm9QGfdX2UKGgGR0A6LZOi35N5aAdLE2gIR0BBurwWnCO4dX2UKGgGR0A0/O/+KjzqaAdLDmgIR0BBvOvECNjtdX2UKGgGR0A17VX3g1m8aAdLEGgIR0BBvr1/Ue+3dX2UKGgGR0A0ch5xBE8aaAdLDWgIR0BBwQj+rELqdX2UKGgGR0Av5amGdqcmaAdLCmgIR0BBxNAC4jKQdX2UKGgGR0A1WW56MR6GaAdLDmgIR0BBxTijtXxOdX2UKGgGR0Axx/Pw/gR9aAdLDWgIR0BBy3eenQ6ZdX2UKGgGR0BBxGyPdVNpaAdLHWgIR0BBz9YwIt17dX2UKGgGR0AymGY8dPtVaAdLDGgIR0BB0b1yvLX+dX2UKGgGR0BE8Mhouf29aAdLJGgIR0BB0eRPoFFEdX2UKGgGR0BB9R20Re1KaAdLHmgIR0BB1eDOC5EudX2UKGgGR0A3ZrcTJyQxaAdLGGgIR0BB2ekP+XJHdX2UKGgGR0A0k/zJ6po9aAdLEGgIR0BB29cbBGhFdX2UKGgGR0A0hgZjx0+1aAdLD2gIR0BB3/SQYDT0dX2UKGgGR0A0KGgBcRlIaAdLFWgIR0BB39tMwlBydX2UKGgGR0A11Re1KGtZaAdLEWgIR0BB4A6ltTDPdX2UKGgGR0A6jqQA+6iCaAdLF2gIR0BB4geii7CjdX2UKGgGR0A8dY6GQCCBaAdLG2gIR0BB7L/sE7nxdX2UKGgGR0A2hsdkrf+CaAdLD2gIR0BB76NMoMKDdX2UKGgGR0A461iONo8IaAdLFWgIR0BB8fPgNwzddX2UKGgGR0A10MTviLl4aAdLFWgIR0BB+Cih37k5dX2UKGgGR0AxtC9AX2ugaAdLC2gIR0BB+s3AEdNndX2UKGgGR0A6f3/Pw/gSaAdLE2gIR0BB+vtD2JzldX2UKGgGR0A7HQ+2VmjCaAdLFGgIR0BB/VfmcOLBdX2UKGgGR0AzZsfJV81GaAdLEGgIR0BB/ZdnkDISdX2UKGgGR0A+UkWhysCDaAdLG2gIR0BB/39JjDsMdX2UKGgGR0BAHvu5SWJKaAdLH2gIR0BCAbAckt2+dX2UKGgGR0BC5TEBKcuraAdLIWgIR0BCAfOD8LrpdX2UKGgGR0AzO2IwdsBRaAdLEGgIR0BCBDlHSWqtdX2UKGgGR0A1Wb9If8uSaAdLFGgIR0BCCKF7D2rXdX2UKGgGR0A5zGC7K7qZaAdLEmgIR0BCCNjLB9CvdX2UKGgGR0A0uBd2Pkq+aAdLDWgIR0BCEJI1+AmRdX2UKGgGR0A6SKHO8kD7aAdLFmgIR0BCE7xmTTvzdX2UKGgGR0BAibT2FnIyaAdLHGgIR0BCFeRgZ0jkdX2UKGgGR0Ash9ycTakAaAdLCWgIR0BCGGmk30f6dX2UKGgGR0A1CAckt29taAdLDmgIR0BCHRfnfVI7dX2UKGgGR0Awy2USqU/waAdLCWgIR0BCH6eGwiaBdX2UKGgGR0A1iprULDyfaAdLD2gIR0BCJhn8KohqdX2UKGgGR0A7qs189fTkaAdLGGgIR0BCKPKU3XI2dX2UKGgGR0A4j2H+IdlvaAdLEmgIR0BCL4VRDTjOdX2UKGgGR0A+tYFqzqrzaAdLGWgIR0BCNmcOLBKudX2UKGgGR0BAYxtP557gaAdLGGgIR0BCOFL39JjEdX2UKGgGR0Az9O7xusLfaAdLEWgIR0BCOxfF72L6dX2UKGgGR0BCgfKQq7ROaAdLImgIR0BCPQpON5t4dX2UKGgGR0A2edYnv2GqaAdLDmgIR0BCPUV8CxNZdX2UKGgGR0A4CFEy+HrRaAdLEGgIR0BCPSlnAZbZdX2UKGgGR0A5KGRFI/Z/aAdLE2gIR0BCQX+2mYShdX2UKGgGR0BAGP+GXXyzaAdLH2gIR0BCQX4sVclgdX2UKGgGR0A1m5ggHNX6aAdLEWgIR0BCRh4D9wWFdX2UKGgGR0A6+qjafzz3aAdLGGgIR0BCSIlD4QBgdX2UKGgGR0BEDze40/GEaAdLIWgIR0BCVWrn1WbPdX2UKGgGR0AxZ6nzg/C7aAdLDGgIR0BCVXs5XEIgdX2UKGgGR0BKW1jI7vG7aAdLKGgIR0BCWamGdqcmdX2UKGgGR0A0YtrKvFFVaAdLDWgIR0BCWYXwb2lEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-Walker2DBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5ee5a3f3e8ee451c1b3ddb9ee07b6e336a7bb645241815a2cddf9eeb8e940bdb
3
- size 1791142
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ddc89ca82a4cec07e4a3e2c9c85905234ff9a3e1bb16b22cc759b7317980efc
3
+ size 1794664
ppo-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c03269680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c03269710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c032697a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c03269830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8c032698c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8c03269950>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c032699e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8c03269a70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c03269b00>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c03269b90>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c03269c20>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8c032b88a0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
28
+ "net_arch": [
29
+ {
30
+ "pi": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "vf": [
35
+ 256,
36
+ 256
37
+ ]
38
+ }
39
+ ]
40
+ },
41
+ "observation_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
44
+ "dtype": "float32",
45
+ "_shape": [
46
+ 22
47
+ ],
48
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
49
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
50
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
51
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
52
+ "_np_random": null
53
+ },
54
+ "action_space": {
55
+ ":type:": "<class 'gym.spaces.box.Box'>",
56
+ ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
57
+ "dtype": "float32",
58
+ "_shape": [
59
+ 6
60
+ ],
61
+ "low": "[-1. -1. -1. -1. -1. -1.]",
62
+ "high": "[1. 1. 1. 1. 1. 1.]",
63
+ "bounded_below": "[ True True True True True True]",
64
+ "bounded_above": "[ True True True True True True]",
65
+ "_np_random": null
66
+ },
67
+ "n_envs": 16,
68
+ "num_timesteps": 8192,
69
+ "_total_timesteps": 5000,
70
+ "_num_timesteps_at_start": 0,
71
+ "seed": null,
72
+ "action_noise": null,
73
+ "start_time": 1657881064.5540903,
74
+ "learning_rate": 3e-05,
75
+ "tensorboard_log": "./tensorboard",
76
+ "lr_schedule": {
77
+ ":type:": "<class 'function'>",
78
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
79
+ },
80
+ "_last_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAf3WRvQAAAAD30ok4wqpKvwAAAAANbQe/AAAAAEQVar+PEZ6/FIr9v+DJ/T30S3I/bA0OP+umPr7yN6O+XHKsv8wCir9WejO/kZRevxVF4L8+Kkw/jjiHPyS5D78AAAAA99KJOCFDT74AAAAANLuQvwAAAAAlu86/X225v4wii79w3J6+JdEHv1XZC73JnQs/+XGkv5GaCsCcknq/oBnXP7rA4r5Bd6M/PipMP444hz9cScq9AAAAAPfSiTgsVEc/AAAAACL60z0AAAAAnS5lv6nqDMDimlS/18ZXP5RzOD/mVZI/AoYjPzQc775FdBK/k/qfv7Hmhj5Ocnm/asN6vz4qTD+OOIc/2JfiPgAAAAD30ok4Tlq7vgAAAAC6sl8/AAAAAEi8Rj/4jvY+vvXOveFOLT+BSDg/F+tkv/FZCb+wXCk/n/rWPmCq1T7FU0K/AFLHPgKDND8+Kkw/jjiHP0nPVz4AAAAA99KJOFaiH78AAAAAjXlZPQAAAAAQ1aa8jHtcPQHbtr//JGA9Q/u1PhZ2rL6oPTc+AcEcv4qv478lZZc+hHJ4P7FV5D+VaO++PipMP444hz9HTlHAAAAAAPfSiTjmCCC/AAAAALPglMAAAAAAZg/zvxeDpr5svSXAksRBwAOTNL86Y+o/pk31P2XXF8CvCCDArXwDwArXjb+xhwNAwOvdPj4qTD+OOIc/GilOvQAAAAD30ok4yOCvvwAAAAAChaO+AAAAAEKva71NkFA/127TPinXCb+Ksa2/ALrSPmSH5D90k/4+KWDtvesNDL8R9/I8PAgGPj68CT8+Kkw/jjiHP4m8378AAAAA99KJOKxYm78AAAAAMV0GwAAAAAChOYK/EdFMP3OP8D49EUXA2BAHwDMZiD4Bw4nAoz0svbfsZj2KhOC/wgmRvz6glz/XnDM/ZH+gv1FUcr/Nwr4+AAAAAPfSiTjSEbU9AAAAADl4Rz8AAAAAB2WPPkeEKT6XGQi+U2GZPvdHQD4FMwm/9xSMvtutkL40ASy/7Rg9PxnIvz+6AD+/HJ4qvz4qTD+OOIc/qPlMPwAAAAD30ok45NAmvgAAAAAOiw4+AAAAAJIMMz/cttw+yQ8tv3WQKD/7Cyo/RPDgvvvpZL/5Sba+U3JCv9bLZT8yVWM/DvI4v0/Wir1kf6C/UVRyvwjtcT8AAAAA99KJONcjyT4AAAAAorIyPwAAAAB1DoQ/EFU3P2XpEb3RJVo/inCePp/fjr8uXG49ozpzPz0IpL6fE10//p+GPzGim7+/Lsw9ZH+gv1FUcr8EnY+/AAAAAPfSiTiLj4K/AAAAAKtTfL8AAAAAaqNwv3SZBT/0eaQ+Jhq0v3oXa7/n2Fg/MtdlvxPLpb2w8i4+RmN/v6aPKb/op5Q/SPmKPz4qTD+OOIc/q+hxPwAAAAD30ok4b6egPwAAAABpzDk/AAAAgFlGiz9GRUw/Ft4jP9zE5z6kY/0+rbhbv9qakb7fmII/X1PYPu2lOj/KzY4/6gV+vwnVg75kf6C/UVRyv925CL8AAAAA99KJOJn7Wb8AAAAA1Ee8vgAAAADsZa+/RiQuvxM4Dz8lsES/JjKiv7P7QzxPBZe9RrspP2x11D4l2ei/P8yBv/IWx7+Nz4+/PipMP1FUcr+7TJs+AAAAAPfSiTiOMJ6/AAAAAMm3PD4AAAAAIW/xPee89L15Bue/rsYtP6tvND/PEpW/EtHfvOuW7L4wBh7AWJ2XPktSE0AJA0i+ofsOvz4qTD9RVHK/bSBTPwAAAAD30ok4e06QPgAAAAB2hgA+AAAAADX0Uz/up4g+1hRjv3+0Lj+gPtI+4krwvZi2sz4zUf++LVjYv/SfbT8y2R5AcVmMv3wDq75kf6C/jjiHP5R0lGIu"
83
+ },
84
+ "_last_episode_starts": {
85
+ ":type:": "<class 'numpy.ndarray'>",
86
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
87
+ },
88
+ "_last_original_obs": {
89
+ ":type:": "<class 'numpy.ndarray'>",
90
+ ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFW4g/AAAAAKWZeT8AAAAAe51cPQAAAACMYHU/AAAAAJOYdj8AAAAATiPJvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWeCGPwAAAADCLW4/AAAAAJtMXL0AAAAALRp8PwAAAADBp4I/AAAAAJn15r0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDg3fD8AAAAA4gF6PwAAAADoBqq8AAAAAObahT8AAAAA+3h3PwAAAACYNkk9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5kn8/AAAAAKL7bT8AAAAAK1hBPQAAAABDn4k/AAAAAHhXdj8AAAAAAr8OuwAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyI2IPwAAAADyMoM/AAAAAPcVPT0AAAAAnTSGPwAAAAD4P4c/AAAAADBJ3L0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLLxgD8AAAAAUueBPwAAAADakM69AAAAAICxhj8AAAAABVF2PwAAAABqnz69AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA27Xc/AAAAAGwGeT8AAAAAjM7tPQAAAAAjc3A/AAAAAGi3hj8AAAAAnvynPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHiSGPwAAAABiZm8/AAAAADTE/TwAAAAAdDuJPwAAAACFy3s/AAAAADx5Wj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAyZcT8AAAAA92SEPwAAAACwB7+9AAAAAMOohj8AAAAAWveEPwAAAACPchu9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALpIk/AAAAABnMhz8AAAAAf/yGPAAAAACcWHU/AAAAAP1CiT8AAAAAnLXPPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAdeIPwAAAADOV3U/AAAAAA3W2b0AAAAANC+GPwAAAADEuYE/AAAAAGxbhr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEVUeT8AAAAAgCh6PwAAAABy+Yo9AAAAAA9GgD8AAAAAhViHPwAAAABoTvS9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID83Ho/AAAAABzgfz8AAAAAdXqmPQAAAAAFsHw/AAAAAGklgj8AAAAAEdYRvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAa4x8PwAAAADl1XQ/AAAAAE2ZHD0AAAAAF7lzPwAAAABKG30/AAAAAB/MyD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEGTdT8AAAAA6J9zPwAAAABiTre9AAAAAGi2hz8AAAAAVONsPwAAAAAUZ+w9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOSHE/AAAAAAg8ej8AAAAApj0quwAAAADR+W4/AAAAANZMeT8AAAAAGmZovQAAAAAAAAAAAAAAAJR0lGIu"
91
+ },
92
+ "_episode_num": 0,
93
+ "use_sde": true,
94
+ "sde_sample_freq": 4,
95
+ "_current_progress_remaining": -0.6384000000000001,
96
+ "ep_info_buffer": {
97
+ ":type:": "<class 'collections.deque'>",
98
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDrXSqlxffKMAWyUSxWMAXSUR0BBQqw6hg3MdX2UKGgGR0BARxFy7wrlaAdLHWgIR0BBQv7FbVz7dX2UKGgGR0AtxEGZ/kNnaAdLCWgIR0BBQywnpjc3dX2UKGgGR0AqVVTaTOgQaAdLB2gIR0BBRRzzVc2SdX2UKGgGR0AzUstCiRGMaAdLDmgIR0BBRUrkKeCkdX2UKGgGR0BA3Myad+XraAdLGmgIR0BBS9j5KvmpdX2UKGgGR0A7iDc/MW43aAdLFGgIR0BBS8vugHu7dX2UKGgGR0A735byH2ytaAdLFmgIR0BBS+9Jz1brdX2UKGgGR0A+etlI3BHkaAdLG2gIR0BBTA7gbZOBdX2UKGgGR0A7PpHZsbeeaAdLFmgIR0BBUcd5prULdX2UKGgGR0A2N21lXiiqaAdLD2gIR0BBV43Ns3yadX2UKGgGR0AyqGwA2hqTaAdLDmgIR0BBWashgVoIdX2UKGgGR0AnPjx0+1SgaAdLB2gIR0BBX6LOzIFNdX2UKGgGR0A7RDL8rI5paAdLIWgIR0BBY1eBxxT9dX2UKGgGR0A4V5k9U0emaAdLFGgIR0BBZT7di2DydX2UKGgGR0A3478ejmCAaAdLE2gIR0BBaVYyO7xvdX2UKGgGR0A2R6lLvkR0aAdLEGgIR0BBa3Q+lj3FdX2UKGgGR0AyIVHnU2DQaAdLCmgIR0BBbZ6t1ZDBdX2UKGgGR0A6nG5+YtxuaAdLFmgIR0BBb8CHRCyAdX2UKGgGR0A5ugaFVT73aAdLFmgIR0BBcmJ3xFy8dX2UKGgGR0BD7t+TeO4oaAdLImgIR0BBdPoV2zOYdX2UKGgGR0A6N+iJwbVCaAdLGWgIR0BBeV7x/d6+dX2UKGgGR0BAo3SBshxHaAdLHGgIR0BBe5NoJzDGdX2UKGgGR0A50dsBQvYfaAdLF2gIR0BBe63RXwLFdX2UKGgGR0A/ac4YJmdzaAdLGGgIR0BBfbUXpGF0dX2UKGgGR0A9aahHskY5aAdLGWgIR0BBf9XDFZPmdX2UKGgGR0A3ql0YCQtBaAdLE2gIR0BBgAiV0Lc9dX2UKGgGR0BBAUFKTSssaAdLHmgIR0BBgliBoVVQdX2UKGgGR0A04dj5KvmpaAdLD2gIR0BBhEEC/47BdX2UKGgGR0AulOiWVu76aAdLCWgIR0BBhk9ECvHMdX2UKGgGR0A8nvS+g13uaAdLFmgIR0BBkMCkoF3ZdX2UKGgGR0AwlJGe+VTraAdLCmgIR0BBkK9Gqgh9dX2UKGgGR0AwVL7Gecx1aAdLCWgIR0BBlR8lXzUadX2UKGgGR0A6JyFwkxATaAdLGGgIR0BBm4eLehwmdX2UKGgGR0A5Cr9ETg2qaAdLFmgIR0BBm6InBtUGdX2UKGgGR0A6K4jKPn0TaAdLFWgIR0BBnneaa1CxdX2UKGgGR0A4U5M10knkaAdLFWgIR0BBpU1Q66redX2UKGgGR0A8FqMWGh24aAdLGGgIR0BBp4oy9EkTdX2UKGgGR0A4mAqur6tUaAdLEWgIR0BBp40/GEPEdX2UKGgGR0At6spXp4bCaAdLCWgIR0BBr7rC3w1BdX2UKGgGR0A/+O5J9RaYaAdLHmgIR0BBr99MK1G9dX2UKGgGR0A9ImEGqxTsaAdLGGgIR0BBsho/RmbtdX2UKGgGR0A1wqLjxTbWaAdLFGgIR0BBtChew9q2dX2UKGgGR0A7HstCiRGMaAdLFWgIR0BBtEzwc5sCdX2UKGgGR0A92HmRvFWGaAdLGmgIR0BBuJkf9xZMdX2UKGgGR0BBC1LBbfP5aAdLHGgIR0BButRm9QGfdX2UKGgGR0A6LZOi35N5aAdLE2gIR0BBurwWnCO4dX2UKGgGR0A0/O/+KjzqaAdLDmgIR0BBvOvECNjtdX2UKGgGR0A17VX3g1m8aAdLEGgIR0BBvr1/Ue+3dX2UKGgGR0A0ch5xBE8aaAdLDWgIR0BBwQj+rELqdX2UKGgGR0Av5amGdqcmaAdLCmgIR0BBxNAC4jKQdX2UKGgGR0A1WW56MR6GaAdLDmgIR0BBxTijtXxOdX2UKGgGR0Axx/Pw/gR9aAdLDWgIR0BBy3eenQ6ZdX2UKGgGR0BBxGyPdVNpaAdLHWgIR0BBz9YwIt17dX2UKGgGR0AymGY8dPtVaAdLDGgIR0BB0b1yvLX+dX2UKGgGR0BE8Mhouf29aAdLJGgIR0BB0eRPoFFEdX2UKGgGR0BB9R20Re1KaAdLHmgIR0BB1eDOC5EudX2UKGgGR0A3ZrcTJyQxaAdLGGgIR0BB2ekP+XJHdX2UKGgGR0A0k/zJ6po9aAdLEGgIR0BB29cbBGhFdX2UKGgGR0A0hgZjx0+1aAdLD2gIR0BB3/SQYDT0dX2UKGgGR0A0KGgBcRlIaAdLFWgIR0BB39tMwlBydX2UKGgGR0A11Re1KGtZaAdLEWgIR0BB4A6ltTDPdX2UKGgGR0A6jqQA+6iCaAdLF2gIR0BB4geii7CjdX2UKGgGR0A8dY6GQCCBaAdLG2gIR0BB7L/sE7nxdX2UKGgGR0A2hsdkrf+CaAdLD2gIR0BB76NMoMKDdX2UKGgGR0A461iONo8IaAdLFWgIR0BB8fPgNwzddX2UKGgGR0A10MTviLl4aAdLFWgIR0BB+Cih37k5dX2UKGgGR0AxtC9AX2ugaAdLC2gIR0BB+s3AEdNndX2UKGgGR0A6f3/Pw/gSaAdLE2gIR0BB+vtD2JzldX2UKGgGR0A7HQ+2VmjCaAdLFGgIR0BB/VfmcOLBdX2UKGgGR0AzZsfJV81GaAdLEGgIR0BB/ZdnkDISdX2UKGgGR0A+UkWhysCDaAdLG2gIR0BB/39JjDsMdX2UKGgGR0BAHvu5SWJKaAdLH2gIR0BCAbAckt2+dX2UKGgGR0BC5TEBKcuraAdLIWgIR0BCAfOD8LrpdX2UKGgGR0AzO2IwdsBRaAdLEGgIR0BCBDlHSWqtdX2UKGgGR0A1Wb9If8uSaAdLFGgIR0BCCKF7D2rXdX2UKGgGR0A5zGC7K7qZaAdLEmgIR0BCCNjLB9CvdX2UKGgGR0A0uBd2Pkq+aAdLDWgIR0BCEJI1+AmRdX2UKGgGR0A6SKHO8kD7aAdLFmgIR0BCE7xmTTvzdX2UKGgGR0BAibT2FnIyaAdLHGgIR0BCFeRgZ0jkdX2UKGgGR0Ash9ycTakAaAdLCWgIR0BCGGmk30f6dX2UKGgGR0A1CAckt29taAdLDmgIR0BCHRfnfVI7dX2UKGgGR0Awy2USqU/waAdLCWgIR0BCH6eGwiaBdX2UKGgGR0A1iprULDyfaAdLD2gIR0BCJhn8KohqdX2UKGgGR0A7qs189fTkaAdLGGgIR0BCKPKU3XI2dX2UKGgGR0A4j2H+IdlvaAdLEmgIR0BCL4VRDTjOdX2UKGgGR0A+tYFqzqrzaAdLGWgIR0BCNmcOLBKudX2UKGgGR0BAYxtP557gaAdLGGgIR0BCOFL39JjEdX2UKGgGR0Az9O7xusLfaAdLEWgIR0BCOxfF72L6dX2UKGgGR0BCgfKQq7ROaAdLImgIR0BCPQpON5t4dX2UKGgGR0A2edYnv2GqaAdLDmgIR0BCPUV8CxNZdX2UKGgGR0A4CFEy+HrRaAdLEGgIR0BCPSlnAZbZdX2UKGgGR0A5KGRFI/Z/aAdLE2gIR0BCQX+2mYShdX2UKGgGR0BAGP+GXXyzaAdLH2gIR0BCQX4sVclgdX2UKGgGR0A1m5ggHNX6aAdLEWgIR0BCRh4D9wWFdX2UKGgGR0A6+qjafzz3aAdLGGgIR0BCSIlD4QBgdX2UKGgGR0BEDze40/GEaAdLIWgIR0BCVWrn1WbPdX2UKGgGR0AxZ6nzg/C7aAdLDGgIR0BCVXs5XEIgdX2UKGgGR0BKW1jI7vG7aAdLKGgIR0BCWamGdqcmdX2UKGgGR0A0YtrKvFFVaAdLDWgIR0BCWYXwb2lEdWUu"
99
+ },
100
+ "ep_success_buffer": {
101
+ ":type:": "<class 'collections.deque'>",
102
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
103
+ },
104
+ "_n_updates": 20,
105
+ "n_steps": 512,
106
+ "gamma": 0.99,
107
+ "gae_lambda": 0.92,
108
+ "ent_coef": 0.0,
109
+ "vf_coef": 0.5,
110
+ "max_grad_norm": 0.5,
111
+ "batch_size": 128,
112
+ "n_epochs": 20,
113
+ "clip_range": {
114
+ ":type:": "<class 'function'>",
115
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
116
+ },
117
+ "clip_range_vf": null,
118
+ "normalize_advantage": true,
119
+ "target_kl": null
120
+ }
ppo-Walker2DBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b824802c1d5a8f5aee5fa11b4fe83e8a0879406c449b0931a8ea28375ccc926
3
+ size 1183856
ppo-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4470f5f14e6fa67021d02dded3d2eb7557d9a2cafb50a0d312e7e508148ceaf
3
+ size 591102
ppo-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 35.10816896930337, "std_reward": 4.505745566422867, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-15T10:37:20.983052"}