File size: 910 Bytes
9b99880 d0d94dc 9b99880 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
from transformers import pipeline
from typing import Dict, List, Any
class EndpointHandler():
def __init__(self, path=""):
self.pipeline = pipeline(task="zero-shot-object-detection",model=path, device = 0 ) #device = 0 to use GPU rather than -1 which would be CPU
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
images (:obj:`string`)
candiates (:obj:`list`)
Return:
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
"""
inputs = data.pop("inputs", data)
# decode base64 image to PIL
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
# run prediction one image wit provided candiates
detector = self.pipeline(images=[image], candidate_labels=inputs["candiates"])
return detector |