File size: 2,029 Bytes
e3cc8f9 8d7c073 e3cc8f9 8d7c073 e3cc8f9 8d7c073 e3cc8f9 222f9c5 e3cc8f9 222f9c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: PhoBERT-cls-OCR
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PhoBERT-cls-OCR
This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6475
- Accuracy: 0.8416
- F1: 0.8422
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5849 | 1.0 | 25 | 0.4385 | 0.8218 | 0.8225 |
| 0.3382 | 2.0 | 50 | 0.3785 | 0.8614 | 0.8599 |
| 0.1897 | 3.0 | 75 | 0.4339 | 0.8515 | 0.8511 |
| 0.1101 | 4.0 | 100 | 0.4626 | 0.8614 | 0.8599 |
| 0.0798 | 5.0 | 125 | 0.5006 | 0.8713 | 0.8703 |
| 0.0547 | 6.0 | 150 | 0.5670 | 0.8614 | 0.8614 |
| 0.034 | 7.0 | 175 | 0.5568 | 0.8812 | 0.8806 |
| 0.0121 | 8.0 | 200 | 0.6414 | 0.8317 | 0.8326 |
| 0.0207 | 9.0 | 225 | 0.6713 | 0.8416 | 0.8427 |
| 0.0203 | 10.0 | 250 | 0.6475 | 0.8416 | 0.8422 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|