--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-cls-OCR results: [] --- # PhoBERT-cls-OCR This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1546 - Accuracy: 0.9593 - F1: 0.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4221 | 1.0 | 43 | 0.2568 | 0.9070 | 0.9049 | | 0.1993 | 2.0 | 86 | 0.1515 | 0.9593 | 0.9592 | | 0.1313 | 3.0 | 129 | 0.1582 | 0.9593 | 0.9591 | | 0.0966 | 4.0 | 172 | 0.1456 | 0.9651 | 0.9651 | | 0.0737 | 5.0 | 215 | 0.1432 | 0.9651 | 0.9651 | | 0.0592 | 6.0 | 258 | 0.1488 | 0.9651 | 0.9651 | | 0.0633 | 7.0 | 301 | 0.1605 | 0.9593 | 0.9592 | | 0.0575 | 8.0 | 344 | 0.1546 | 0.9593 | 0.9592 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3