--- base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-cls-detail-in-Non_OCR results: [] --- # PhoBERT-cls-detail-in-Non_OCR This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2965 - Accuracy: 0.95 - F1: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5312 | 1.0 | 25 | 1.2681 | 0.55 | 0.4060 | | 1.1478 | 2.0 | 50 | 0.8709 | 0.82 | 0.7465 | | 0.7779 | 3.0 | 75 | 0.5259 | 0.92 | 0.8928 | | 0.528 | 4.0 | 100 | 0.3918 | 0.92 | 0.8928 | | 0.4236 | 5.0 | 125 | 0.3363 | 0.94 | 0.9254 | | 0.3641 | 6.0 | 150 | 0.3035 | 0.95 | 0.9359 | | 0.3356 | 7.0 | 175 | 0.2965 | 0.95 | 0.9359 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1