Edit model card

distilbert-base-uncased-finetuned-intro2-verizon

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0215
  • Accuracy: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6826 1.0 3 0.6074 1.0 1.0
0.5609 2.0 6 0.4800 1.0 1.0
0.4792 3.0 9 0.3545 1.0 1.0
0.3244 4.0 12 0.2644 1.0 1.0
0.2651 5.0 15 0.1861 1.0 1.0
0.1719 6.0 18 0.1314 1.0 1.0
0.1361 7.0 21 0.0975 1.0 1.0
0.092 8.0 24 0.0748 1.0 1.0
0.0714 9.0 27 0.0599 1.0 1.0
0.0487 10.0 30 0.0489 1.0 1.0
0.0425 11.0 33 0.0407 1.0 1.0
0.0341 12.0 36 0.0347 1.0 1.0
0.0304 13.0 39 0.0303 1.0 1.0
0.0262 14.0 42 0.0273 1.0 1.0
0.0244 15.0 45 0.0252 1.0 1.0
0.022 16.0 48 0.0237 1.0 1.0
0.0213 17.0 51 0.0227 1.0 1.0
0.0204 18.0 54 0.0220 1.0 1.0
0.0207 19.0 57 0.0216 1.0 1.0
0.0184 20.0 60 0.0215 1.0 1.0

Framework versions

  • Transformers 4.16.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.