ppo-LunarLander-v2 / config.json
Sri Kanthavel
HF Deep RL Course Unit 1 Exercise
aa3920b
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78938bcac0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78938bcac160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78938bcac1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78938bcac280>", "_build": "<function ActorCriticPolicy._build at 0x78938bcac310>", "forward": "<function ActorCriticPolicy.forward at 0x78938bcac3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78938bcac430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78938bcac4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x78938bcac550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78938bcac5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78938bcac670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78938bcac700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78938bca1bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691389702103731965, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD5xTxIU5G6l92fuzaEJbc81jo7X7i4OgAAgD8AAIA/M2bWvCj69z5wUci9rQ96vjZoOr2Tp8m8AAAAAAAAAADN33K+sZkSPwi5DT539ZS+cQzVu0KrlLwAAAAAAAAAADP1Ib6cEHm8LSU0uzwGerl+5tM9i4t0OgAAgD8AAIA/M5HYvMOhabo5/JK7XF8gOCcxyrpakxo3AACAPwAAgD/NJiM8XOdLuhFCiLr8GN21qZ52O44ZnzkAAIA/AACAPwBgqjvD8Um6AuHRO3f92TeE3Tw7rqJENgAAgD8AAIA/ZuCAPK4ljrpOFpE6b1mVNYFxFrocQai5AACAPwAAgD/m55+99sBvumIR5rfstVOzSQeBOy+vBDcAAAAAAACAP5okj7wpwBq6nNyoO+cAvTf84De5GxhNNgAAgD8AAIA/hsp/Pl86WT96IzC96pJ9vkNcbT4K1yu+AAAAAAAAAAAzQwQ7SJuFuoGuJTlaGCq2NrlNuTLjPLgAAIA/AACAP+ZkT70fXcG5EmAbO+MXKrZdg5M7mi4ttQAAgD8AAIA/5o6gPYXribkrbZE5zXZjs8qjerv6Pq24AACAPwAAgD+tcV++ycHoPi4r6D1JQna++1w7PBjP0bwAAAAAAAAAAJqO97yk8CI4XeBbOZ78wjSTFcE7UxeDuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDyTsByS3b6MAWyUTQYBjAF0lEdAl7gstGus93V9lChoBkdAPtrjDKoybmgHS+poCEdAl7pBmoR7JHV9lChoBkdAZSJzvJA+p2gHTegDaAhHQJfFS4oZydZ1fZQoaAZHQGO8DWK/EfloB03oA2gIR0CXybZUT+NtdX2UKGgGR0Bj4PTPSlWPaAdN6ANoCEdAl8rz3Ehq03V9lChoBkdAY2mKJEYwZmgHTegDaAhHQJfMStp22Xt1fZQoaAZHQGID5Jsfq5doB03oA2gIR0CXzw557gKndX2UKGgGR0BjjsGLUCq7aAdN6ANoCEdAl9g2X5WRzXV9lChoBkdAYtXH5rP+oGgHTegDaAhHQJfaAVVPva11fZQoaAZHQGFodHMEA5toB03oA2gIR0CX2kJNj9XLdX2UKGgGR0BTtLHQyAQQaAdL3mgIR0CX283jdYW+dX2UKGgGR0BcDrlq8DjjaAdN6ANoCEdAl+D0EC/47HV9lChoBkdAYN8g6EJ0GWgHTegDaAhHQJfjkAlv60p1fZQoaAZHQGCSka2nbZhoB03oA2gIR0CX+lrvb48EdX2UKGgGR0BfhYJ/oaDPaAdN6ANoCEdAl/64xgy/K3V9lChoBkdAY9gYeDFqBWgHTegDaAhHQJgDeWAwwkB1fZQoaAZHQEd+7dSEUTNoB00IAWgIR0CYA+Xrt3OfdX2UKGgGR0BixnCCSRr8aAdN6ANoCEdAmAYW56MR6HV9lChoBkdAY7aAlOXVsmgHTegDaAhHQJgNw+IMz/J1fZQoaAZHQGTAZf2K2rpoB03oA2gIR0CYEB8aGYa6dX2UKGgGR0Bg96oKlYU4aAdN6ANoCEdAmBtHYL9deXV9lChoBkdASmuIwdsBQ2gHS9VoCEdAmBuZs41gpnV9lChoBkdAZHVUlRgqmWgHTegDaAhHQJgfaoNutOp1fZQoaAZHQGUo3sgMc6xoB03oA2gIR0CYIUKEnLJTdX2UKGgGR0BkmQwsXizcaAdN6ANoCEdAmCMNKRMewXV9lChoBkdAYff6ciGFjGgHTegDaAhHQJgpPXz19OR1fZQoaAZHQGMuGmUGFBZoB03oA2gIR0CYKrW912aEdX2UKGgGR0BgS1mxt52RaAdN6ANoCEdAmCrlUIcBEXV9lChoBkdAY0J5rxiG4GgHTegDaAhHQJgsJ17pmmN1fZQoaAZHQGVovbO/tY1oB03oA2gIR0CYMv98JD3NdX2UKGgGR0BiWGu5jH4oaAdN6ANoCEdAmEsVAqur63V9lChoBkdAXw2lO45LiGgHTegDaAhHQJhOYgjhUBJ1fZQoaAZHQGgZ5Bsyi25oB03oA2gIR0CYUTdkJ8fFdX2UKGgGR0BnRZS5y2hJaAdN6ANoCEdAmFF5fICEH3V9lChoBkdAUl0VYZEUkGgHS9xoCEdAmFF1q33HrHV9lChoBkdAY9fqDbrTpmgHTegDaAhHQJhSsyRB/qh1fZQoaAZHQGegrYPGyX5oB03oA2gIR0CYWaDh99c9dX2UKGgGR0BkHr8ejmCAaAdN6ANoCEdAmGKgdGRV63V9lChoBkdAY8wAEMb3oWgHTegDaAhHQJhi8J8fFJh1fZQoaAZHQGVH5YgaFVVoB03oA2gIR0CYZy5XEIgOdX2UKGgGR0BjqG21D0DmaAdN6ANoCEdAmGlVHOKO1nV9lChoBkdAZH2XGff4y2gHTegDaAhHQJhrmjEehf11fZQoaAZHQF2V9QoCuEFoB03oA2gIR0CYcjBeXzDodX2UKGgGR0BiAr+glF+eaAdN6ANoCEdAmHPKR2bG3nV9lChoBkdAZlJUDuBtlGgHTegDaAhHQJh0BYfW+XZ1fZQoaAZHQGZSwYDTz/ZoB03oA2gIR0CYdXqLCN0edX2UKGgGR0BgG3sw+MZQaAdN6ANoCEdAmJNTMJQcgnV9lChoBkdAQ/5Z6lchT2gHS/NoCEdAmJQeyu6mO3V9lChoBkdAZybhwVCXyGgHTegDaAhHQJiXgfA9FF51fZQoaAZHQG0SNknTiKloB03fA2gIR0CYmti83++/dX2UKGgGR0BjlilzltCRaAdN6ANoCEdAmJv1VxS5y3V9lChoBkdAZQQIUrTYumgHTegDaAhHQJib9vNu+AV1fZQoaAZHQGM6ZZSvTw5oB03oA2gIR0CYncBkI5YHdX2UKGgGR0BLd5RbbDdhaAdL1WgIR0CYocpYcNpedX2UKGgGR0Blxg8jiXIEaAdN6ANoCEdAmKX7tzCDVnV9lChoBkdAZeVVktmL+GgHTegDaAhHQJivvOjZcs11fZQoaAZHQGK268xsVL1oB03oA2gIR0CYsAmp2ll9dX2UKGgGR0BizuTot+TeaAdN6ANoCEdAmLNdfgJkXnV9lChoBkdAZCvrOZ9d/2gHTegDaAhHQJi0/2wmmch1fZQoaAZHQF8ffQKKHfxoB03oA2gIR0CYtoomG/N8dX2UKGgGR0Bje5lUZNwjaAdN6ANoCEdAmLxq0IC2dHV9lChoBkdAYqfUc4o7WGgHTegDaAhHQJi9zOHFglZ1fZQoaAZHQGTMDqOcUdtoB03oA2gIR0CYvfaS9ugpdX2UKGgGR0A/Ti6g/TsqaAdL5GgIR0CYygZntfG/dX2UKGgGR0BnHTsUqQRxaAdN6ANoCEdAmN+TOs1baHV9lChoBkdAXgBML4N7SmgHTegDaAhHQJjiLhNucc51fZQoaAZHQGZ2B9LHuJFoB03oA2gIR0CY5GmOlwcYdX2UKGgGR0BwIzbKzRhMaAdNgwJoCEdAmOTRIJ7b+XV9lChoBkdAY8w3fhuO0mgHTegDaAhHQJjlHpfQa751fZQoaAZHQGbRiaqjrRloB03oA2gIR0CY5Ro1UEPldX2UKGgGR0Bkexul41P4aAdN6ANoCEdAmOZMMiKR+3V9lChoBkdAZfkbLEDQq2gHTegDaAhHQJjpMQ8OkLx1fZQoaAZHQGHykmQbMotoB03oA2gIR0CY7O7oB7u2dX2UKGgGR0Bd6EsasIVuaAdN6ANoCEdAmPXOYx+KCXV9lChoBkdAYo1jYqXnhmgHTegDaAhHQJj5EOFxn4B1fZQoaAZHQF8Q32VVxS5oB03oA2gIR0CY+shwl0HRdX2UKGgGR0BhhHVqesgdaAdN6ANoCEdAmP0A3T/hl3V9lChoBkdAYZ5X/YJ3PmgHTegDaAhHQJkFZ0YCQtB1fZQoaAZHQGHObgbZOBVoB03oA2gIR0CZByKxs2vTdX2UKGgGR0BvV6gmJFb3aAdNSgFoCEdAmQ0NFfAsTXV9lChoBkdAZOfepGWldmgHTegDaAhHQJkSRIz3yqd1fZQoaAZHQGSlYzJp35hoB03oA2gIR0CZFGwEhaC+dX2UKGgGR0BpEoRXfZVXaAdN6ANoCEdAmScdjLB9C3V9lChoBkdAb0VMQmNR32gHTWUDaAhHQJkoCfh/Aj91fZQoaAZHQG4vxdY4hlloB02uA2gIR0CZKEzErGzbdX2UKGgGR0BlxtMM7U5NaAdN6ANoCEdAmSj7Io3JgnV9lChoBkdAZD+ZeiSJTGgHTegDaAhHQJkpT+VC5Vh1fZQoaAZHQGdb85Ke05VoB03oA2gIR0CZKYyKNyYHdX2UKGgGR0BkwyNXHR1HaAdN6ANoCEdAmSmIZydWhnV9lChoBkdAbiho/RmbsmgHTcIDaAhHQJkvesq8UVV1fZQoaAZHQGK4akhzNlloB03oA2gIR0CZPmmnfl6rdX2UKGgGR0BmqLYsd1dPaAdN6ANoCEdAmUQqZH/cWXV9lChoBkdAZQJmWdEsrmgHTegDaAhHQJlGNuLrHEN1fZQoaAZHQGOyBo/RmbtoB03oA2gIR0CZTVK+i8FqdX2UKGgGR0BjFvPeHi3oaAdN6ANoCEdAmU8lWGRFJHV9lChoBkdAcVnxgAp8W2gHTf8CaAhHQJlRREsrd311fZQoaAZHQGQlDKHO8kFoB03oA2gIR0CZVhQla8pTdX2UKGgGR0BwE3B9Cu2aaAdNqwNoCEdAmVi2DYh+v3V9lChoBkdAcIZCgbp/w2gHTVoDaAhHQJlavND+irV1fZQoaAZHQHGAwJXyRSxoB01oA2gIR0CZXFtEXtSidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}