Text Generation
Transformers
PyTorch
Safetensors
English
llama
text-generation-inference
Inference Endpoints
PY007 commited on
Commit
1031cc8
•
1 Parent(s): ce7f8cb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ - OpenAssistant/oasst_top1_2023-08-25
7
+ language:
8
+ - en
9
+ ---
10
+ <div align="center">
11
+
12
+ # TinyLlama-1.1B
13
+ </div>
14
+
15
+ https://github.com/jzhang38/TinyLlama
16
+
17
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
18
+
19
+ <div align="center">
20
+ <img src="./TinyLlama_logo.png" width="300"/>
21
+ </div>
22
+
23
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
24
+
25
+ #### This Model
26
+ This is the chat model finetuned on [PY007/TinyLlama-1.1B-intermediate-step-240k-503b](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-240k-503b). The dataset used is [OpenAssistant/oasst_top1_2023-08-25](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25).
27
+
28
+ #### How to use
29
+ You will need the transformers>=4.31
30
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
31
+ ```
32
+ from transformers import AutoTokenizer
33
+ import transformers
34
+ import torch
35
+ model = "PY007/TinyLlama-1.1B-Chat-v0.2"
36
+ tokenizer = AutoTokenizer.from_pretrained(model)
37
+ pipeline = transformers.pipeline(
38
+ "text-generation",
39
+ model=model,
40
+ torch_dtype=torch.float16,
41
+ device_map="auto",
42
+ )
43
+
44
+ prompt = "How to get in a good university?"
45
+ formatted_prompt = (
46
+ f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
47
+ )
48
+
49
+
50
+ sequences = pipeline(
51
+ formatted_prompt,
52
+ do_sample=True,
53
+ top_k=50,
54
+ top_p = 0.9,
55
+ num_return_sequences=1,
56
+ repetition_penalty=1.1,
57
+ max_new_tokens=1024,
58
+ )
59
+ for seq in sequences:
60
+ print(f"Result: {seq['generated_text']}")
61
+ ```