Edit model card

robbert0410_lrate2.5b4

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6518
  • Precisions: 0.8163
  • Recall: 0.7936
  • F-measure: 0.8017
  • Accuracy: 0.9116

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.62 1.0 942 0.4300 0.8644 0.6922 0.7030 0.8830
0.3475 2.0 1884 0.4044 0.8222 0.7322 0.7464 0.8970
0.2227 3.0 2826 0.4658 0.7715 0.7573 0.7476 0.9070
0.1488 4.0 3768 0.5292 0.8193 0.7461 0.7655 0.9045
0.0983 5.0 4710 0.5855 0.7938 0.7749 0.7829 0.9049
0.0652 6.0 5652 0.6155 0.8170 0.7826 0.7976 0.9100
0.0419 7.0 6594 0.6306 0.8072 0.7929 0.7971 0.9123
0.032 8.0 7536 0.6518 0.8163 0.7936 0.8017 0.9116

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tommert25/robbert0410_lrate2.5b4

Finetuned
(40)
this model